
The Challenges of
Hardware Synthesis from

C-like Languages
Stephen A. Edwards

Department of Computer Science,
Columbia University

www.cs.columbia.edu/˜sedwards

sedwards@cs.columbia.edu

Why C?

C model Verilog/VHDL GDS II

“A single language would facilitate the step-by-step refinement of a
system design down to its components”

[SystemC: Liao et al. 1997]

“All examples contributed by industry were written in the C
programming language” [SpecC: Gajski et al., 2000]

“If you are familiar with conventional C you will recognize nearly all
the other features.” [Handel-C: Celoxica, 2003]

Why Hardware?

vs.

Efficiency: Power, speed, or cost.

Let us assume we have decided to produce hardware.

Genesis: BCPL begat B begat C

BCPL: Martin Richards, Cambridge, 1967

Typeless: everything a machine word

Memory: undifferentiated array of words

Then, processors mostly word-addressed
LET try(ld,row,rd) BE TEST row=all

THEN count := count + 1

ELSE $(

LET poss = all & NOT (ld | row | rd)

UNTIL poss=0 DO $(

LET p = poss & -poss

poss := poss - p

try(ld+p << 1, row+p, rd+p >> 1)

$)

$)

Part of the N-queens
problems implemented
in BCPL

C History

Developed 1969–1973 along with Unix

Due mostly to Dennis Ritchie

Designed for systems programming:
operating systems, utility programs, compilers

PDP-11/20 (c. 1970) 24K of core (12K for kernel)

Euclid’s Algorithm on the PDP-11

int gcd(int m, int n)

{

int r;

while ((r = m%n) != 0) {

m = n;

n = r;

}

return n;

}

.globl _gcd

.text

_gcd:

jsr r5, rsave

L2: mov 4(r5), r1

sxt r0

div 6(r5), r0

mov r1, -10(r5)

jeq L3

mov 6(r5), 4(r5)

mov -10(r5), 6(r5)

jbr L2

L3: mov 6(r5), r0

jbr L1

L1: jmp rretrn

Three Big Challenges

Concurrency Timing Communication

Traditional C Concurrency: Pthreads
pthread_mutex_t mymutex; /* Mutual Exclusion Variable */

int myglobal = 0; /* Global variable */

pthread_t thread[3]; /* Information about threads */

void *myThread(void *arg) {

pthread_mutex_lock(&mymutex); /* Get the lock */

++myglobal; /* Update shared variable */

pthread_mutex_unlock(&mymutex); /* Release the lock */

pthread_exit((void*) 0);

}

void count_to_three() {

int i, status;

pthread_attr_t attr;

pthread_mutex_init(&mymutex, NULL);

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

for (i = 0 ; i < 3 ; i++)

pthread_create(&thread[i], &attr, myThread, (void *)i);

for (i = 0 ; i < 3 ; i++)

pthread_join(thread[i], (void **)&status);

}

Approach 1: Add Parallel Constructs

HardwareC, SystemC, Ocapi, Handel-C, SpecC, Bach C

This is C?

/* Handel-C code for a four-place queue */

void main(chan (in) c4 : 8,

chan (out) c0 : 8)

{

int d0, d1, d2, d3;

chan c1, c2, c3;

void e0() { while (1) { c1 ? d0; c0 ! d0; } }

void e1() { while (1) { c2 ? d1; c1 ! d1; } }

void e2() { while (1) { c3 ? d2; c2 ! d2; } }

void e3() { while (1) { c4 ? d3; c3 ! d3; } }

par {

e0(); e1(); e2(); e3();

}

}

2: Let Compiler Find Concurrency

Cones, Transmogrifier C, C2Verilog, CASH

Compiler unrolls loops

Fundamental limits on how
much concurrency could ever
be found [David Wall 91, 94]

This problem: a Holy
Grail of Computer
Science

/* CONES code counts ones */

INPUTS: IN[5];

OUTPUTS: OUT[3];

rd53() {

int count, i;

count = 0;

for (i = 0 ; i < 5 ; i++)

if (IN[i] == 1)

count = count + 1;

for (i = 0 ; i < 3 ; i++) {

OUT[i] = count & 0x01;

count = count >> 1;

}

}

Timing in Algorithmic Languages

Algorithm: “A sequence of steps designed to solve a problem.”

Powerful abstraction; inadequate for hardware

Approach 1: Explicit Clocks

Ocapi, SpecC, Cones, SystemC

Quite a departure

/* SystemC code for a simple protocol */

while(index < 16) {

data_req.write(true);

wait_until(data_valid.delayed() == true);

tmp_real = in_real.read();

tmp_imag = in_imag.read();

real[index] = tmp_real;

imag[index] = tmp_imag;

index++;

data_req.write(false);

wait();

}

Approach 2: Constraints

HardwareC, C2Verilog

An awkward way to describe behavior

/* Constraints in HardwareC */

constraint maxtime from label1 to label3 = 4 cycles;
constraint delay of label2 = 2 cycles;

label1:
Y = read(X);

Y = Y + 1;
label2:

Y = Y * Q;

label3:
send(channelA, Y);

Approach 3: Rules Imply Clocks

Handel-C (assignment = clock),
Transmogrifier C (loop iteration = clock),
C2Verilog (complex)

/* Handel-C Transmogrifier C */
for (i = 0 ; i < 8 ; i++) { /* 9 8 */

a[i] = c[i]; /* 8 0 */
b[i] = d[i] || f[i]; /* 8 0 */

}

Unwieldy. What if the rules do not do what you need?

Communication: Pointers

Assumes a monolithic memory model.

Semeria and De Micheli [ICCAD 2001] used pointer
analysis to break memory into separate spaces.

Not implemented in any commercial compiler.

Approach 1: Preserve the C model

CASH, Handel-C, C2Verilog

/* Source C code */

int *p;

struct { int i; short sh[2]; } s;

int b[5];

if (...)

p = &s.i;

else

p = &b[2];

p = p + 1;

out = *p;

P can point into s or into b

/* After Semeria et al. */

int pp;

short sh[4];

int b[5];

if (...)

pp = 0 << 16 | 0;

else

pp = 1 << 16 | 8;

pp = pp + 4;

if (pp >> 16 == 0)

out = sh[pp&0xffff >> 1] << 16 |

sh[pp&0xffff >> 1 + 1];

else

out = b[pp&0xffff >> 2];

Approach 2: Use Other Primitives

HardwareC (rendezvous)
Handel-C (rendezvous)
Bach C (rendezvous)
SpecC (variety)
SystemC (variety)

/* Handel-C serial-to-parallel */

while (1) {

bitstream ? bits_0;

bitstream ? bits_1;

bitstream ? bits_2;

bitstream ? bits_3;

bitstream ? bits_4;

bitstream ? bits_5;

bitstream ? bits_6;

bitstream ? bits_7;

STDOUT ! bits_0 @ bits_1 @

bits_2 @ bits_3 @

bits_4 @ bits_5 @

bits_6 @ bits_7;

}

Summary

Concurrency Explicit or compiler’s job

Timing Explicit, constraints, or rules

Communication C-like or additional

The next language should have...

• High-level abstractions that address complexity

Concurrency + communication, timing control,
hardware types, and support for refinement

• Constructs that match what designers want

Datapaths, controllers, memories, busses, hierarchy

• Semantics with an efficient translation into hardware

• Semantics that facilitate very efficient simulation

Will it be like C? At most only superficially.

