
1

Copyright © 2001 Stephen A. Edwards All rights reserved

ESUIF: An Open Esterel
Compiler

Stephen A. Edwards

Department of Computer Science

Columbia University, New York

www.cs.columbia.edu/~sedwards

Copyright © 2001 Stephen A. Edwards All rights reserved

Not Another One…
� My research agenda is to push Esterel compilation

technology much farther

� We still don’t have a technique that builds fast code
for all large programs

� No decent Esterel compiler available in source form

Copyright © 2001 Stephen A. Edwards All rights reserved

Quick History of Esterel Compilers
� Automata-based

• V1, V2, V3 (INRIA/CMA) [Berry, Gonthier 1992]
• Excellent for small programs with few states
• Don’t scale well

� Netlist-based
• V4, V5 (INRIA/CMA)
• Scales very nicely
• Produces slow code for sequential programs

� Executables for these available at www.esterel.org
� Not open-source

Copyright © 2001 Stephen A. Edwards All rights reserved

Quick History of Esterel Compilers
� Control-flow-graph based

• EC [Edwards 1999, 2000, 2002]
• Produces very efficient code for acyclic programs

� Discrete-event based
• SAXO-RT [Weil et al. 2000]
• Produces efficient code for acyclic programs

� Both proprietary & unlikely to ever be released
� Neither has V5’s ability to analyze static cycles

• Many valid programs are rejected

Copyright © 2001 Stephen A. Edwards All rights reserved

ESUIF
� New, open-source compiler being developed at

Columbia University

� Based on SUIF 2 infrastructure (Stanford University)

� Divided into many little passes

� Common database represents program throughout

Copyright © 2001 Stephen A. Edwards All rights reserved

Open, Flexible Architecture
� Common database used throughout

SUIF 2 database

Esterel

Source

ECL

Source

C

Source

Passes:

Dismantlers,
optimization

Front-ends

2

Copyright © 2001 Stephen A. Edwards All rights reserved

SUIF 2 Database
� Main component of the SUIF 2 system:

� User-customizable persistent, object-oriented
database

� Written in C++

� Not the most efficient, but very flexible

Copyright © 2001 Stephen A. Edwards All rights reserved

SUIF 2 Database
� Database schema written in their own “ hoof”

language
� Automatically translated into C++

class New : public SuifObject
{

public:
int get_x();
void set_x(int the_value);
~New();
void print(…);
static const Lstring get_class_name();

…

}

concrete New
{ int x; }

hoof

C++

Copyright © 2001 Stephen A. Edwards All rights reserved

Three Intermediate Representations
� Front end generates AST-like database

• One-to-one mapping between classes and Esterel
statements

� Dismantled into concurrent IC-like statements
• Described next

� Scheduling produces C code
• SUIF 2 has complete schema for C

Copyright © 2001 Stephen A. Edwards All rights reserved

Intermediate Representation
� Goal: simpler semantics than IC [Gonthier 1988]

� Slightly lower-level

� More symmetry between strong and weak abort
• IC uses awkward implicit exceptions for weak abort

� More division between concurrency and exception
handling

Copyright © 2001 Stephen A. Edwards All rights reserved

IR Primitives
� var := expr
� if (expr) { stmts } else { stmts }
� Label:
� goto Label

� resume (state-var) { stmts }
� pause

� trapScope (Handler-Label) T1,…,Tn { stmts }
� fork L1, …, Ln
� join
� thread (exit-var, Join-Label) { stmts }
� exitAt n

Copyright © 2001 Stephen A. Edwards All rights reserved

Pause and Resume
� Idea: single pair of primitives that implement ability

to suspend and resume sequences of instructions

� Semantics:
• pause sends control just past its enclosing resume
• resume sends control to just after the last-executed

pause

� Trivial translation into a C switch statement
� Simple enumeration of states (just pause statements)
� Strong and weak abort just tests before and after

3

Copyright © 2001 Stephen A. Edwards All rights reserved

Translating Strong Abort

abort

pause;

pause

when S

goto Surface
Depth:
if (S) { goto Terminate }
resume {
Surface:
pause
pause
goto Terminate

}
pause
goto Depth

Terminate:

Strong preemption:

Predicate tested
before body is
resumed

Control initially sent
directly into the body

This pause
suspends and
resumes the abort
statement

Copyright © 2001 Stephen A. Edwards All rights reserved

First Reaction

abort

pause;

pause

when S

goto Surface
Depth:
if (S) { goto Terminate }
resume {
Surface:
pause
pause
goto Terminate

}
pause
goto Depth

Terminate:

Copyright © 2001 Stephen A. Edwards All rights reserved

Second Reaction

abort

pause;

pause

when S

goto Surface
Depth:
if (S) { goto Terminate }
resume {
Surface:
pause
pause
goto Terminate

}
pause
goto Depth

Terminate:

Copyright © 2001 Stephen A. Edwards All rights reserved

Translating Weak Abort

abort

pause;

pause

when S

goto Surface
Depth:
resume {
Surface:
pause
pause
goto Terminate

}
if (S) { goto Terminate }
pause
goto Depth

Terminate:

Weak preemption:

Predicate tested
after body has a
chance to run

Copyright © 2001 Stephen A. Edwards All rights reserved

Dismantling
� Multiple passes dismantle AST-like Esterel into the IR

� Each dismantles a single Esterel statement

� Most are trivial

Copyright © 2001 Stephen A. Edwards All rights reserved

Parallel, Trap, and Exit
� Translation of exit differs depending on parallel

behavior

trap T in Does not terminate siblings

exit T No prioritization of exits

end

trap T in Terminates siblings

stmts || exit T Must worry about trap priorities

end

4

Copyright © 2001 Stephen A. Edwards All rights reserved

Parallel, Trap, and Exit
� Translation is tedious, but not difficult
� Uses Berry and Gonthier’s encoding of exit levels:

0 = terminate

1 = pause

2 = exit innermost trap

3 = exit next innermost trap

4 = etc.

Copyright © 2001 Stephen A. Edwards All rights reserved

Ideas for Code Generation
� ESUIF does not currently have a back-end

� I am considering a few possibilities

Copyright © 2001 Stephen A. Edwards All rights reserved

Static Unrolling
� Cyclic programs can always be evaluated by

unrolling: lfp(F) = F(⊥⊥⊥⊥)n

� Three-valued evaluation costly, not clear with
control-flow

� Theorem (suggested to me by Berry)

� Proof: F is monotonic, lfp does not contain ⊥⊥⊥⊥

If a program is causal, then two- and three-valued
evaluation will produce the same result

Copyright © 2001 Stephen A. Edwards All rights reserved

Program Dependence Graph
� Program Dependence Graph [Ferrante et al., TOPLAS

1987] is concurrent
• Represents only control and data dependencies
• Natural for Esterel because it represents concurrency

present A then
emit B

else
emit C

end;
emit D;
present B then

emit E
end

A

C B
D

B

E

Data
dependence

Control
dependence

Copyright © 2001 Stephen A. Edwards All rights reserved

Program Dependence Graph
� Idea: Represent Esterel program as a program

dependence graph
• Unroll to resolve cycles (duplicate code)

� Generate code that conforms to the program
dependence graph

� Some PDGs do not require additional predicates
when sequentialized [Ferrante et al., Steensgaard]

� Heuristics will have to be used to insert a minimum
number of predicates in most cases

Copyright © 2001 Stephen A. Edwards All rights reserved

Discrete-Event Approaches
� Weil et al. [CASES 2000] have taken this approach
� Successful, but scheduler could be better
� Does not handle statically cyclic programs

� Techniques such as French et al. [DAC 1995]
schedule as much as possible beforehand, but allow
some dynamic behavior

� Idea: Generate an unrolled schedule and invoke
unduplicated basic blocks more than once per
reaction (solves causality and schizophrenia)

5

Copyright © 2001 Stephen A. Edwards All rights reserved

Conclusions
� ESUIF compiler under development at Columbia

• Front-end completed
• Most dismantlers written
• Work beginning on back-end

� New intermediate representation
• pause and resume primitives

� Some new ideas for code generation
• Static unrolling with two-valued evaluation
• Program Dependence Graph
• Event-driven Approaches

Copyright © 2001 Stephen A. Edwards All rights reserved

For More Information
� Visit my website

http://www.cs.columbia.edu/~sedwards

