The SR Domain

Stephen Edwards
Edward A. Lee

http://ww. eecs. berkel ey. edu/ " sedwar ds/

University of California, Berkeley

STEPHEN EDWARDS THE SR DOMAIN

\The SR Domalin I

e A specification scheme

— Synchronous model of time

x Predictable temporal behavior
« Easier to design
x Easier to analyze

— Heterogeneous: compiler cannot see
iInside blocks

x Mixing languages made easy
* Allows separate compilation
x Large designs are tractable

e Deterministic
— Guaranteed by fixed-point semantics
e Fast, predictable execution time

— Chaotic iteration-based scheme

— Fully static scheduling

STEPHEN EDWARDS THE SR DOMAIN

‘SR Systems I

Zero-delay blocks compute
continuous functions

Instantaneous communication
with feedback

— e
— >
__/ -

Single driver, multiple receiver wires
with values from flat CPOs

e Block functions may change between
iInstants for time-varying behavior

e Block functions may be specified in any
language

STEPHEN EDWARDS THE SR DOMAIN

‘Zero Delay and Feedback I

How to maintain determinism?

Which goes first?
— Need an
A B order-invariant
~ semantics

Contradictory!
| | Needto attach
meaning to such

systems.

STEPHEN EDWARDS THE SR DOMAIN

‘Dealing with Feedback I

Why bother at all?
Answer: Heterogeneity

e Cycles are usually broken by delay elements
at the lowest level

e Some schemes (e.g., Lustre) insist on this
e False feedback often appears at higher levels

e Data dependent cycles can appear when
sharing resources

e Virtually all cycles are “false,” yet must be
dealt with.

STEPHEN EDWARDS THE SR DOMAIN

Fixed-point Semantics are Natural
for Synchronous Specifications
with Feedback

Why a fixed point?

Self-reference:
The essence of a cycle

Y
RN

System function Vector of signals
(composition of at time t
block functions) (zero delay)

fixed point <= stable state

determinism <= unique solution

STEPHEN EDWARDS THE SR DOMAIN

\The Least Fixed Point of What? I

et |
— C
— B H]e
1B D |
Interpret as \, " Take LFP

B(I, f(1)) = (1)

B

A
-

B
B _
N C
B

D

.........................

STEPHEN EDWARDS THE SR DOMAIN

Unique Least Fixed Point
Theorem

Recall:

A monotonic function on a complete
partial order (with 1) has a unique
least fixed point.

What does it mean to make the system function f
monotonic and the signal values a CPO?

STEPHEN EDWARDS THE SR DOMAIN

‘Vector of Signals is a CPO I

Values along an upward path grow more defined.

More Defined

l\J_/O

- o
Incomparable

“Undefined” Less Defined

element

10 00

11 01
| >< >< >< | vector-valued extension
11 11 0L 10

N\

Formally, xC y if y is at least as defined as x.

STEPHEN EDWARDS

‘Adding 1 Is Enough I

Any set {a;,a,...,an,...} can easily be “lifted” to
give a flat partial order:

L
A CPO for signals with pure events:

absent present

NS

1
A CPO for valued events:

absent&vz/vn
1L

Why not absent C present?

present Athen ... else ... end

Violates monotonicity

THE SR DOMAIN

10

STEPHEN EDWARDS

\Monotonic Block Functions I

Giving a more defined input to a monotonic
function always gives a more defined output.

Formally, x C y implies f(x) C f(y).

A monotonic function never recants (“changes its
mind”).

THE SR DOMAIN

11

STEPHEN EDWARDS

THE SR DOMAIN

Many Languages Use Strict
Functions, Which Are Monotonic

A strict function:

o(...,L,..)=(L,..., L)

inﬁjts outputs
Outside; Inside:
A strict Simple
monotonic —™ ™ 1 — “function call”
function semantics

Most common imperative languages only
compute strict functions.

Danger: Cycles of strict functions
deadlock—fixed point is all . —need some
non-strict functions.

12

STEPHEN EDWARDS THE SR DOMAIN

A Simple Way to Find the Least
Fixed Point

lCf(LCf(f(L)C---CLFP=LFP=--.

For each instant,

1. Start with all signals at L
2. Evaluate all blocks (in some order)

3. If any change their outputs, repeat Step 2

fo a [b [C
(a,b,c) = (L,L,1)
fo(L,L,1) = (0,L1,1)
f2(0,L,1L) = (0,1, 1)
f»(0,1,L) = (0,1,0)
) <

13

STEPHEN EDWARDS

THE SR DOMAIN

‘The Dependency Graph I

Transform into single-output functions:

.

_.

-

A

1

2

(o

Y

Y

R

14

STEPHEN EDWARDS THE SR DOMAIN

‘The Scheduling Algorithm I

1. Decompose into strongly-connected
components

2. Remove a head (set of vertices) from each
SCC, leaving a tall

3. Recurse on each tail

15

STEPHEN EDWARDS THE SR DOMAIN

‘ Evaluating SCCs I

Split a strongly-connected graph into a head and
tail:

..

Good heads break T’s strong connectivity.

16

STEPHEN EDWARDS THE SR DOMAIN

‘Example I

0 N ;
A |1

y

2

T | B
L5
. Emar
ystem — c -
4
[
Graph

Head @ @

M O N

17

STEPHEN EDWARDS

\Schedules I

tail

head
A~ A~
0 3))

scC

tail tail
~

5)
scC

rhead
6 (

5456 303125456303 1254506 303

THE SR DOMAIN

18

STEPHEN EDWARDS THE SR DOMAIN

‘Finding Good Heads I

Must break strong connectivity—remove a border
of a set of vertices:

border of { A, B, C }

(vertices with incoming edges)

(H)= A

B

A C

19

STEPHEN EDWARDS

THE SR DOMAIN

Choosing Good Border Sets

Heuristic: “Grow” a set starting from a vertex and
greedily include the best border vertex:

Set Border

1 5

15 23

152 3

1523 7

15237 |46 2 is better (3 would
152374 |6 Increase border)

20

STEPHEN EDWARDS THE SR DOMAIN

‘Scheduling Results I

Q
-]
D B o & "8 g
S 100s D mam .t 1 BXREp
0p) o Fg E'“"
EJ) E:Z -u“ o ;
a 105 n*{" “a "'.5 a "
S P
@) 0 af AGR
U b :fif)
S A
[O 20 40 60 80 100 120
Number of Outputs
1000x

Q

2

i 100x

O

>

O 10x

o

S

) 1x

)

o

N

0.1x

0.1s 1s 10s 100s
Time to Compute Exact

21

THE SR DOMAIN

STEPHEN EDWARDS

The Cost of Using the Heuristic

25%20%15%10% 5%
Fraction of Runs

| 0 IO OIn X O om o o m an EE q

0 20 40 60
Number of Outputs

- 150%
- 100%

- 50%

- 0%

Increase in Cost of Schedule

22

STEPHEN EDWARDS

THE SR DOMAIN

‘Asymptotic Schedule Cost I
2 1.5
1000 - 4 4
£
1% s 8.-3':"
3100 - S XCLhl
@ :02&'8
-] °/ o N o:.“
k5 .f'a:s’.
S YO
2 I
E
= 10 1 S
o .
o - °
l TTT] T TTT]
1 10 100
Number of Outputs

23

STEPHEN EDWARDS THE SR DOMAIN

\Conclusions I

e Deterministic specification scheme combining
synchrony and heterogeneity

e Semantics: the least fixed point of a
continuous function on a CPO

e lterative execution scheme based on
recursive divide-and-conquer

e Exact scheduling practical for small graphs
e Heuristic practical for very large graphs

e Execution time for random graphs growing
slower than n*°

24

