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\The SR Domalin I

e A specification scheme

— Synchronous model of time

x Predictable temporal behavior
« Easier to design
x Easier to analyze

— Heterogeneous: compiler cannot see
iInside blocks

x Mixing languages made easy
* Allows separate compilation
x Large designs are tractable

e Deterministic
— Guaranteed by fixed-point semantics
e Fast, predictable execution time

— Chaotic iteration-based scheme

— Fully static scheduling
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‘SR Systems I

Zero-delay blocks compute
continuous functions

Instantaneous communication
with feedback
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Single driver, multiple receiver wires
with values from flat CPOs

e Block functions may change between
iInstants for time-varying behavior

e Block functions may be specified in any
language
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‘Zero Delay and Feedback I

How to maintain determinism?

Which goes first?
— Need an
A B order-invariant
~ semantics

Contradictory!
| | Needto attach
meaning to such

systems.
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‘Dealing with Feedback I

Why bother at all?
Answer: Heterogeneity

e Cycles are usually broken by delay elements
at the lowest level

e Some schemes (e.g., Lustre) insist on this
e False feedback often appears at higher levels

e Data dependent cycles can appear when
sharing resources

e Virtually all cycles are “false,” yet must be
dealt with.
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Fixed-point Semantics are Natural
for Synchronous Specifications
with Feedback

Why a fixed point?

Self-reference:
The essence of a cycle

Y
RN

System function Vector of signals
(composition of at time t
block functions) (zero delay)

fixed point <= stable state

determinism <= unique solution
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\The Least Fixed Point of What? I

et |
— C
— B H]e
1B D |
Interpret as \, " Take LFP

B(I, f(1)) = (1)

B

A
-

B
B _
N C
B

D

.........................




STEPHEN EDWARDS THE SR DOMAIN

Unique Least Fixed Point
Theorem

Recall:

A monotonic function on a complete
partial order (with 1) has a unique
least fixed point.

What does it mean to make the system function f
monotonic and the signal values a CPO?
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‘Vector of Signals is a CPO I

Values along an upward path grow more defined.

More Defined

l\J_/O

- o
Incomparable

“Undefined” Less Defined

element

10 00

11 01
| >< >< >< | vector-valued extension
11 11 0L 10
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Formally, xC y if y is at least as defined as x.
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‘Adding 1 Is Enough I

Any set {a;,a,...,an,...} can easily be “lifted” to
give a flat partial order:

L
A CPO for signals with pure events:

absent present

NS

1
A CPO for valued events:

absent&vz/vn
1L

Why not absent C present?

present Athen ... else ... end

Violates monotonicity

THE SR DOMAIN
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\Monotonic Block Functions I

Giving a more defined input to a monotonic
function always gives a more defined output.

Formally, x C y implies f(x) C f(y).

A monotonic function never recants (“changes its
mind”).

THE SR DOMAIN
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THE SR DOMAIN

Many Languages Use Strict
Functions, Which Are Monotonic

A strict function:

o(...,L,..)=(L,..., L)

inﬁjts outputs
Outside; Inside:
A strict Simple
monotonic —™ ™ 1 — “function call”
function semantics

Most common imperative languages only
compute strict functions.

Danger: Cycles of strict functions
deadlock—fixed point is all . —need some
non-strict functions.
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A Simple Way to Find the Least
Fixed Point

lCf(LCf(f(L)C---CLFP=LFP=--.

For each instant,

1. Start with all signals at L
2. Evaluate all blocks (in some order)

3. If any change their outputs, repeat Step 2

fo a [ b [ C
(a,b,c) = (L,L,1)
fo(L,L,1) = (0,L1,1)
f2(0,L,1L) = (0,1, 1)
f»(0,1,L) = (0,1,0)
) <
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THE SR DOMAIN

‘The Dependency Graph I

Transform into single-output functions:
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‘The Scheduling Algorithm I

1. Decompose into strongly-connected
components

2. Remove a head (set of vertices) from each
SCC, leaving a tall

3. Recurse on each tail
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‘ Evaluating SCCs I

Split a strongly-connected graph into a head and
tail:

........................................

Good heads break T’s strong connectivity.
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‘Example I
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\Schedules I

tail

head
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‘Finding Good Heads I

Must break strong connectivity—remove a border
of a set of vertices:

border of { A, B, C }

(vertices with incoming edges)

(H)= A

B

A C

19



STEPHEN EDWARDS

THE SR DOMAIN

Choosing Good Border Sets

Heuristic: “Grow” a set starting from a vertex and
greedily include the best border vertex:

Set Border

1 5

15 23

152 3

1523 7

15237 |46 2 is better (3 would
152374 |6 Increase border)
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‘Scheduling Results I
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The Cost of Using the Heuristic
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THE SR DOMAIN

‘Asymptotic Schedule Cost I
2 1.5
1000 - 4 4
£
1% s 8.-3':"
3100 - S XCLhl
@ :02&'8
-] °/ o N o:.“
k5 .f'a:s’.
S YO
2 I
E
= 10 1 S
o .
o - °
l TTT] T TTT]
1 10 100
Number of Outputs

23



STEPHEN EDWARDS THE SR DOMAIN

\Conclusions I

e Deterministic specification scheme combining
synchrony and heterogeneity

e Semantics: the least fixed point of a
continuous function on a CPO

e lterative execution scheme based on
recursive divide-and-conquer

e Exact scheduling practical for small graphs
e Heuristic practical for very large graphs

e Execution time for random graphs growing
slower than n*°
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