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The Esterel Language

Developed by Gérard Berry
starting 1983

Originally for robotics applications

Imperative, textual language

Synchronous model of time like
that in digital circuits

Concurrent

Deterministic



A Simple Example

The specification:

The output O should occur when inputs A and B
have both arrived. The R input should restart this
behavior.



A First Try: An FSM

BR’/ AR’/

ABR’/O

R/

AR’/O

R/

BR’/O

R/



The Esterel Version

module ABRO: Esterel programs
built from modulesinput A, B, R;

Each module has an interface
of input and output signals

output O;

loop
[ await A || await B ];
emit O

each R

end module

Much simpler since language includes notions of signals,
waiting, and reset.



The Esterel Version

module ABRO:
input A, B, R;
output O;

loop

loop...each statement
implements reset

[ await A ||

|| runs the two awaits
in parallel

await B

await waits for the
next cycle where
its signal is present

];
emit O

each R

end module



The Esterel Version

module ABRO:
input A, B, R;
output O;

loop
[ await A || await B ]

Parallel terminates when
all its threads have

;
emit O

Emit O makes signal O present
when it runs

each R

end module



Basic Ideas of Esterel
Imperative, textual language
Concurrent
Based on synchronous model of time:

• Program execution synchronized to an external clock

• Like synchronous digital logic

• Suits the cyclic executive approach

Two types of statements:

• Combinational statements, which take “zero time”
(execute and terminate in same instant, e.g., emit)

• Sequential statements, which delay one or more
cycles (e.g., await)



Uses of Esterel

Wristwatch

• Canonical example

• Reactive, synchronous, hard real-time

Controllers, e.g., for communication protocols

Avionics

• Fuel control system

• Landing gear controller

• Other user interface tasks

Processor components (cache controller, etc.)



Advantages of Esterel

Model of time gives programmer precise timing control

Concurrency convenient for specifying control systems

Completely deterministic

• Guaranteed: no need for locks, semaphores, etc.

Finite-state language

• Easy to analyze

• Execution time predictable

• Much easier to verify formally

Amenable to both hardware and software implementation



Disadvantages of Esterel

Finite-state nature of the language limits flexibility

• No dynamic memory allocation

• No dynamic creation of processes

Little support for handling data; limited to simple
decision-dominated controllers

Synchronous model of time can lead to overspecification

Semantic challenges:

• Avoiding causality violations often difficult

• Difficult to compile

Limited number of users, tools, etc.



The Esterel Language



Esterel’s Model of Time

The standard CS model (e.g., Java’s) is asynchronous:
threads run at their own rate. Synchronization is through
calls to wait() and notify().

Esterel’s model of time is synchronous like that used in
hardware. Threads march in lockstep to a global clock.

Time

Clock tick



Signals

Esterel programs communicate through signals

These are like wires

Each signal is either present or absent in each cycle

Can’t take multiple values within a cycle

Presence/absence not held between cycles

Broadcast across the program

Any process can read or write a signal



Basic Esterel Statements

emit S

Make signal S present in the current cycle

A signal is absent unless emitted in that cycle.

pause

Stop for this cycle and resume in the next.

present S then s1 else s2 end

Run s1 immediately if signal S is present in the current
cycle, otherwise run s2



Simple Example

module Example1:
output A, B, C;

emit A;
present A then

emit B
end;
pause;
emit C

end module

A
B

C



Signal Coherence Rules

Each signal is only present or absent in a cycle,never both

All writers run before any readers do

Thus

present A else
emit A

end

is an erroneous program. (Deadlocks.)

The Esterel compiler rejects this program.



Advantage of Synchrony

Easy to regulate time

Synchronization is free (e.g., no Bakers’ algorithm)

Speed of actual computation nearly uncontrollable

Allows function and timing to be specified independently

Makes for deterministic concurrency

Explicit control of “before” “after” “at the same time”



Time Can Be Controlled Precisely

This guarantees every 60th S an M is emitted

every 60 S do
every invokes its body every 60th Semit M

emit takes no time (cycles)end

S S S S S

M M

1 · · · 59 60 61 · · · 120



The || Operator

Groups of statements separated || by run concurrently
and terminate when all groups have terminated

[
emit A; pause; emit B;

||
pause; emit C; pause; emit D

];
emit E

A B
C D

E



Communication Is Instantaneous

A signal emitted in a cycle is visible immediately

[
pause; emit A; pause; emit A

||
pause; present A then emit B end

]

A A
B



Bidirectional Communication

Processes can communicate back and forth in the same
cycle

[
pause; emit A;
present B then emit C end;
pause; emit A

||
pause; present A then emit B end

]

A A
B
C



Concurrency and Determinism

Signals are the only way for concurrent processes to
communicate

Esterel does have variables, but they cannot be shared

Signal coherence rules ensure deterministic behavior

Language semantics clearly defines who must
communicate with whom when



The Await Statement

The await statement waits for a particular cycle await S
waits for the next cycle in which S is present

[
emit A ; pause ; pause; emit A

||
await A; emit B

]

A A
B



The Await Statement

Await normally waits for a cycle before beginning to check

await immediate also checks the initial cycle

[
emit A ; pause ; pause; emit A

||
await immediate A; emit B

]

A A
B



Loops

Esterel has an infinite loop statement

Rule: loop body cannot terminate instantly

Needs at least one pause, await, etc.

Can’t do an infinite amount of work in a single cycle

loop
emit A; pause; pause; emit B

end

A A A A
B B B



Loops and Synchronization

Instantaneous nature of loops plus await provide very
powerful synchronization mechanisms

loop
await 60 S;
emit M

end

S S S S S

M M

1 · · · 59 60 61 · · · 120



Preemption

Often want to stop doing something and start doing
something else

E.g., Ctrl-C in Unix: stop the currently-running program

Esterel has many constructs for handling preemption



The Abort Statement

Basic preemption mechanism

General form:

abort
statement

when condition

Runs statement to completion. If condition ever holds,
abort terminates immediately.



The Abort Statement

abort
pause;
pause;
emit A

when B;
emit C

A
C

Normal Termination

B
C

Aborted termination

B
C

Aborted termination;
emit A preempted

B A
C

Normal Termination
B not checked
in first cycle
(like await)



Strong vs. Weak Preemption

Strong preemption:

• The body does not run when the preemption
conditionholds

• The previous example illustrated strong preemption

Weak preemption:

• The body is allowed to run even when the
preemptioncondition holds, but is terminated
thereafter

• “weak abort” implements this in Esterel



Strong vs. Weak Abort

Strong abort
emit A does not run

abort
pause;
pause;
emit A;
pause

when B;
emit C

B
C

Weak abort
emit A runs

weak abort
pause;
pause;
emit A;
pause

when B;
emit C

A
B
C



Strong vs. Weak Preemption

Important distinction

Something may not cause its own strong preemption

Erroneous

abort
pause; emit A

when A

OK

weak abort
pause; emit A

when A



The Trap Statement

Esterel provides an exception facility for weak preemption

Interacts nicely with concurrency

Rule: outermost trap takes precedence



The Trap Statement

trap T in
[

pause;
emit A;
pause;
exit T

||
await B;
emit C

]
end trap;
emit D

A D Normal termination
from first process

A
B
C D Emit C also runs

A B
C
D

Second process
allowed to run
even though
first process
has exited



Nested Traps

trap T1 in
trap T2 in
[

exit T1
||

exit T2
]
end;
emit A

end;
emit B

Outer trap takes
precedence; control
transferred directly to the
outer trap statement.
emit A not allowed to run.

B



The Suspend Statement

Preemption (abort, trap) terminate something, but what if
you want to resume it later?

Like the unix Ctrl-Z

Esterel’s suspend statement pauses the execution of a
group of statements

Only strong preemption: statement does not run when
condition holds



The Suspend Statement

suspend
loop

emit A; pause; pause
end

when B

A A B A B A

B delays emission
of A by one cycle

B prevents A
from being emitted here;
resumed next cycle



Causality

Unfortunate side-effect of instantaneous communication
coupled with the single valued signal rule

Easy to write contradictory programs, e.g.,

present A else emit A end

abort pause; emit A when A

present A then nothing end; emit A

These sorts of programs are erroneous; the Esterel
compiler refuses to compile them.



Causality

Can be very complicated because of instantaneous
communication

For example, this is also erroneous

abort
pause;
emit B

Emission of B
indirectly causes
emission of Awhen A

||
pause;
present B then emit A end



Causality

Definition has evolved since first version of the language

Original compiler had concept of “potentials”

Static concept: at a particular program point, which
signals could be emitted along any path from that point

Latest definition based on “constructive causality”

Dynamic concept: whether there’s a “guess-free proof”
that concludes a signal is absent



Causality Example

emit A;
present B then emit C end;

Red statements
reachable

present A else emit B end;

Considered erroneous under the original compiler

After emit A runs, there’s a static path to emit B Therefore,
the value of B cannot be decided yet

Execution procedure deadlocks: program is bad



Causality Example

emit A;
present B then emit C end;

Red statements
reachable

present A else emit B end;

Considered acceptable to the latest compiler

After emit A runs, it is clear that B cannot be emitted
because A’s presence runs the “then” branch of the
second present

B declared absent, both present statements run



Esterel Programming
Examples



People Counter Example

Construct an Esterel program that counts the number of
people in a room. People enter the room from one door
with a photocell that changes from 0 to 1 when the light is
interrupted, and leave from a second door with a similar
photocell. These inputs may be true for more than one
clock cycle.

The two photocell inputs are called ENTER and LEAVE.
There are two outputs: EMPTY and FULL, which are
present when the room is empty and contains three
people respectively.

Source: Mano, Digital Design, 1984, p. 336



Overall Structure

ENTER

LEAVE

Conditioner

Conditioner

Counter

EMPTY

FULL

ADD

SUB

Conditioner detects rising edges of signal from photocell.

Counter tracks number of people in the room.



Implementing the Conditioner

module Conditioner:

input A;

output Y;

loop

await A; emit Y;

await [not A];

end

end module



Testing the Conditioner
# esterel -simul cond.strl
# gcc -o cond cond.c -lcsimul # may need -L
# ./cond
Conditioner> ;
--- Output:
Conditioner> A; # Rising edge
--- Output: Y
Conditioner> A; # Doesn’t generate a pulse
--- Output:
Conditioner> ; # Reset
--- Output:
Conditioner> A; # Another rising edge
--- Output: Y
Conditioner> ;
--- Output:
Conditioner> A;
--- Output: Y



Implementing the Counter: First Try
module Counter:
input ADD, SUB;
output FULL, EMPTY;

var count := 0 : integer in
loop

present ADD then if count < 3 then
count := count + 1 end end;

present SUB then if count > 0 then
count := count - 1 end end;

if count = 0 then emit EMPTY end;
if count = 3 then emit FULL end;
pause

end
end

end module



Testing the Counter
Counter> ;
--- Output: EMPTY
Counter> ADD SUB;
--- Output: EMPTY
Counter> ADD;
--- Output:
Counter> SUB;
--- Output: EMPTY
Counter> ADD;
--- Output:
Counter> ADD;
--- Output:
Counter> ADD;
--- Output: FULL
Counter> ADD SUB;
--- Output: # Oops: still FULL



Counter, second try
module Counter:
input ADD, SUB;
output FULL, EMPTY;

var c := 0 : integer in
loop

present ADD then
present SUB else

if c < 3 then c := c + 1 end
end

else
present SUB then

if c > 0 then c := c - 1 end
end;

end;
if c = 0 then emit EMPTY end;
if c = 3 then emit FULL end;
pause

end
end
end module



Testing the second counter
Counter> ;
--- Output: EMPTY
Counter> ADD SUB;
--- Output: EMPTY
Counter> ADD SUB;
--- Output: EMPTY
Counter> ADD;
--- Output:
Counter> ADD;
--- Output:
Counter> ADD;
--- Output: FULL
Counter> ADD SUB;
--- Output: FULL # Working
Counter> ADD SUB;
--- Output: FULL
Counter> SUB;
--- Output:
Counter> SUB;
--- Output:
Counter> SUB;
--- Output: EMPTY
Counter> SUB;
--- Output: EMPTY



Assembling the People Counter
module PeopleCounter:
input ENTER, LEAVE;
output EMPTY, FULL;

signal ADD, SUB in
run Conditioner[signal ENTER / A,

ADD / Y]
||

run Conditioner[signal LEAVE / A,
SUB / Y]

||
run Counter

end

end module



Vending Machine Example

Design a vending machine controller that dispenses gum
once. Two inputs, N and D, are present when a nickel and
dime have been inserted, and a single output, GUM,
should be present for a single cycle when the machine
has been given fifteen cents. No change is returned.

N = D =

GUM =

Source: Katz, Contemporary Logic Design, 1994, p. 389



Vending Machine Solution
module Vending:
input N, D;
output GUM;

loop
var m := 0 : integer in

trap WAIT in
loop

present N then m := m + 5; end;
present D then m := m + 10; end;
if m >= 15 then exit WAIT end;
pause

end
end;
emit GUM; pause

end
end
end module



Alternative Solution
loop

await
case immediate N do await

case N do await
case N do nothing
case immediate D do nothing

end
case immediate D do nothing

end
case immediate D do await

case immediate N do nothing
case D do nothing

end
end;
emit GUM; pause

end



Tail Lights Example

Construct an Esterel program that controls the turn
signals of a 1965 Ford Thunderbird.

Source: Wakerly, Digital Design Principles & Practices, 2ed, 1994, p. 550



Tail Light Behavior



Tail Lights

There are three inputs, LEFT, RIGHT, and HAZ, that
initiate the sequences, and six outputs, LA, LB, LC, RA,
RB, and RC. The flashing sequence is

LC LB LA step RA RB RC

1

2

3

4



A Single Tail Light
module Lights:
output A, B, C;

loop
emit A; pause;
emit A; emit B; pause;
emit A; emit B; emit C; pause;
pause

end

end module



The T-Bird Controller Interface
module Thunderbird :
input LEFT, RIGHT, HAZ;
output LA, LB, LC, RA, RB, RC;

...

end module



The T-Bird Controller Body
loop

await
case immediate HAZ do

abort
run Lights[signal LA/A, LB/B, LC/C]

||
run Lights[signal RA/A, RB/B, RC/C]

when [not HAZ]
case immediate LEFT do

abort
run Lights[signal LA/A, LB/B, LC/C]

when [not LEFT]
case immediate RIGHT do

abort
run Lights[signal RA/A, RB/B, RC/C]

when [not RIGHT]
end

end



Comments on the T-Bird

I choose to use Esterel’s innate ability to control the
execution of processes, producing succinct
easy-to-understand source but a somewhat larger
executable.

An alternative: Use signals to control the execution of two
processes, one for the left lights, one for the right.

A challenge: synchronizing hazards.

Most communication signals can be either level- or
edge-sensitive.

Control can be done explicitly, or implicitly through signals.



Traffic-Light Controller Example

C

C This controls a traffic light at the
intersection of a busy highway
and a farm road. Normally,
the highway light is green but if a
sensor detects a car on the farm

road, the highway light turns yellow then red. The farm
road light then turns green until there are no cars or after
a long timeout. Then, the farm road light turns yellow then
red, and the highway light returns to green. The inputs to
the machine are the car sensor C, a short timeout signal
S, and a long timeout signal L. The outputs are a timer
start signal R, and the colors of the highway and farm road
lights.

Source: Mead and Conway, Introduction to VLSI Systems, 1980, p. 85.



The Traffic Light Controller
module Fsm:

input C, L, S;
output R;
output HG, HY, FG, FY;

loop
emit HG ; emit R; await [C and L];
emit HY ; emit R; await S;
emit FG ; emit R; await [not C or L];
emit FY ; emit R; await S;

end

end module



The Traffic Light Controller
module Timer:
input R, SEC;
output L, S;

loop
weak abort

await 3 SEC;
[

sustain S
||

await 5 SEC;
sustain L

]
when R;

end

end module



The Traffic Light Controller
module TLC:
input C, SEC;
output HG, HY, FG, FY;

signal S, L, S in
run Fsm

||
run Timer

end

end module



Compiling Esterel



Compiling Esterel

Semantics of the language are formally defined and
deterministic

It is the responsibility of the compiler to ensure the
generated executable behaves correctly w.r.t. the
semantics

Challenging for Esterel



Compilation Challenges

• Concurrency

• Interaction between exceptions and concurrency

• Preemption

• Resumption (pause, await, etc.)

• Checking causality

• Reincarnation
Loop restriction prevents most statements from executing
more than once in a cycle

Complex interaction between concurrency, traps, and loops
allows certain statements to execute twice or more



Automata-Based Compilation

Key insight: Esterel is a finite-state language

Each state is a set of program counter values where the
program has paused between cycles

Signals are not part of these states because they do not
hold their values between cycles

Esterel has variables, but these are not considered part of
the state



Automata Compiler Example

loop
emit A;
await C;
emit B;
pause

end

void tick() {
static int s = 0;
A = B = 0;

switch (s) {
case 0:

A = 1;
s = 1;
break;

case 1:
if (C) {

B = 1; s = 0;
}
break;

}
}



Automata Compiler Example

emit A;
emit B;
await C;
emit D;
present E then

emit B
end

switch (s) {
case 0:

A=1;
B=1;
s=1;
break;

case 1:
if (C) {

D=1;
if (E) B=1;
s=2;

}
break;

case 2:
}



Automata Compilation Considered

Very fast code (Internal signaling can be compiled away)

Can generate a lot of code because concurrency can
cause exponential state growth

n-state machine interacting with another n-state machine
can produce n

2 states

Language provides input constraints for reducing states

• “these inputs are mutually exclusive”

relation A # B # C;

• “if this input arrives, this one does, too”

relation D => E;



Automata Compilation

Not practical for large programs

Theoretically interesting, but don’t work for most programs
longer than 1000 lines

All other techniques produce slower code



Netlist-Based Compilation

Key insight: Esterel programs can be translated into
Boolean logic circuits

Netlist-based compiler:

Translate each statement into a small number of logic
gates, a straightforward, mechanical process

Generate code that simulates the netlist



Netlist Example

emit A; emit B; await C;
emit D; present E then emit B end

Entry

A

B

D

C

E

Exit



Netlist Compilation Considered

Scales very well

• Netlist generation roughly linear in program size

• Generated code roughly linear in program size

Good framework for analyzing causality

• Semantics of netlists straightforward

• Constructive reasoning equivalent to three-valued
simulation

Terribly inefficient code

• Lots of time wasted computing irrelevant values

• Can be hundreds of time slower than automata

• Little use of conditionals



Netlist Compilation

Currently the only solution for large programs that appear
to have causality problems

Scalability attractive for industrial users

Currently the most widely-used technique



Our Technique 1:
Control-Flow Graphs



Control-Flow Graphs

Key insight: Esterel looks like a imperative language, so
treat it as such

Esterel has a fairly natural translation into a concurrent
control-flow graph

Trick is simulating the concurrency

Concurrent instructions in most Esterel programs can be
scheduled statically

Use this schedule to build code with explicit context
switches in it



Overview

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C

D

s=2 s=1

R

1 s 2

A
B

t=0 t=1

B
C

0 t 1

C
D

s=2 s=1

if ((s0 & 3) == 1) {

if (S) {

s3 = 1; s2 = 1; s1 = 1;

} else

if (s1 >> 1)

s1 = 3;

else {

if ((s3 & 3) == 1) {

s3 = 2; t3 = L1;

} else {

t3 = L2;

}

Esterel Concurrent Sequential C code

Source CFG CFG



Translate every

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R



Add Threads

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R



Split at Pauses

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

s=2 s=1



Add Code Between Pauses

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B

C
D

s=2 s=1



Translate Second Thread

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1



Finished Translating

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1



Add Dependencies and Schedule

every R do
loop

await A;
emit B;
present C then

emit D end;
pause

end
||

loop
present B then

emit C end;
pause

end
end

R

1 s 2

A

B B

C C
D

s=2 s=1



Run First Node

R

1 s 2

A

B B

C C
D

s=2 s=1

R



Run First Part of Left Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B



Context Switch

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1



Run Right Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C



Context Switch

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1



Finish Left Thread

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1



Completed Example

R

1 s 2

A

B B

C C
D

s=2 s=1

R

1 s 2
A

B

t=0 t=1

B
C

0 t 1
C

D

s=2 s=1



Generated Code Size (UltraSparc-II)

4K

32K

256K

2M

Automata

Netlist

OptNetlist

ContextSwitch

EventDriven

50 100 200 500 1000 2k 5k
Nodes



Average Cycle Times (UltraSparc-II)

Automata

Netlist

OptNetlist

ContextSwitch

EventDriven

100us

10us

1us

0.1us

50 100 200 500 1000 2k 5k
Nodes



Generated Code Size (Pentium)

Automata

Netlist

OptNetlist

ContextSwitch

EventDriven

4K

32K

256K

50 100 200 500 1000 2k 5k
Nodes



Average Cycle Times (Pentium)

Automata

Netlist

OptNetlist

ContextSwitching

EventDriven

1ms

100us

10us

1us

0.1us

50 100 200 500 1000 2k 5k
Nodes



Control-flow Approach Considered

Scales as well as the netlist compiler, but produces much
faster code, almost as fast as automata

Not an easy framework for checking causality

Static scheduling requirement more restrictive than netlist
compiler

This compiler rejects some programs the others accept

Only implementation hiding within Synopsys’ CoCentric
System Studio. Will probably never be used industrially.

See my IEEE Transactions on Computer-Aided Design
paper for details



Our Technique 2:
Static Discrete Events



Event-driven C back end
module Example:
input I, S;
output O, Q;
signal R, A in

every S do
await I;
weak abort

sustain R
when immediate A;
emit O
||

loop
pause; pause;
present R then

emit A
end present

end loop
||

loop
present R then

pause; emit Q
else

pause
end present

end loop
end every

end signal
end module
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0

1

0

1

s3 s4 s5
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0 1 2

s6

*

0 1

0 1 0 1
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s3s4 s5

s3=0

0

s3=1
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2

s4=0

1
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0

R

0

Q

1

0

s3=2 s3=1

P

s3=2

1

1

1 1

1

O

3

1 013

R s6

s6=0

0A

1

s6=1s6=0

P

s6=1

A A

s4=1

P

P
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P
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S

s1

10
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GRC Selection Tree
s1

s2

0 1
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GRC Control-flow graph
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After Clustering
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Generated code (1)
#define sched1a next1 = head1, head1 = &&C1a
#define sched1b next1 = head1, head1 = &&C1b
#define sched2 next2 = head1, head1 = &&C2
#define sched3a next3 = head1, head1 = &&C3a
#define sched3b next3 = head1, head1 = &&C3b
#define sched4 next4 = head2, head2 = &&C4
#define sched5a next5 = head3, head3 = &&C5a
#define sched5b next5 = head3, head3 = &&C5b
#define sched5c next5 = head3, head3 = &&C5c
#define sched6a next6 = head4, head4 = &&C6a
#define sched6b next6 = head4, head4 = &&C6b
#define sched6c next6 = head4, head4 = &&C6c
#define sched7a next7 = head5, head5 = &&C7a
#define sched7b next7 = head5, head5 = &&C7b



Generated code (2)
int cycle() {
void *next1;
void *next2;
void *next3;
/* other next pointers */

void *head1 = &&END_LEVEL_1;
void *head2 = &&END_LEVEL_2;
/* other level pointers */

if (s1) { s1 = 0; goto N26; }
else {

s1 = 0;
if (S) {
s2 = 1; code0 = -1;
sched7a; sched1b; sched3b;
s3 = 2; sched6b;

} else {



Generated code (3)
if (s2) {

s2 = 1;
code0 = -1;
sched7a; sched1a; sched3a;
switch (s3) {
case 0: sched6c; break;
case 1:
s3 = 1; code1 = -1;
sched6a; sched2; goto N38;

case 2:
if (I) {

s3 = 1; code1 = -1;
sched6a; sched5a;

N38: R = 1; code1 &= -(1 << 1);
}else { s3 = 2; sched6b; }
break;

} } else {
N26: s2 = 0; sched7b;

} } }
goto *head1;



Generated code (4)
C1a: if (s5) Q = 1;
C1b: if (R) s5 = 1;

else s5 = 0;
code0 &= -(1 << 1);
goto *next1;

C2: if (s6) sched4;
else s6 = 0;
goto *next2;

C3a: if (s4) s4 = 0;
else {

if (R) A = 1;
C3b: s4 = 1;

}
code0 &= -(1 << 1);
goto *next3;

END_LEVEL1: goto *head2;



Linked Lists — initial state
Level 0 /* Cluster 0 */

.

.

.
goto *head1;

Level 1 C1a:
C1b:

.

.

.
goto *next1;

C2:

.

.

.
goto *next2;

C3a:
C3b:

.

.

.
goto *next3;

END LEVEL1:
goto *head2;

Level 2 C4:

.

.

.
goto *next4;

END LEVEL2:
goto *head3;



Linked Lists – schedule C3a
Level 0 /* Cluster 0 */

.

.

.
goto *head1;

Level 1 C1a:
C1b:

.

.

.
goto *next1;

C2:

.

.

.
goto *next2;

C3a:
C3b:

.

.

.
goto *next3;

END LEVEL1:
goto *head2;

Level 2 C4:

.

.

.
goto *next4;

END LEVEL2:
goto *head3;



Linked Lists – schedule C1b
Level 0 /* Cluster 0 */

.

.

.
goto *head1;

Level 1 C1a:
C1b:

.

.

.
goto *next1;

C2:

.

.

.
goto *next2;

C3a:
C3b:

.

.

.
goto *next3;

END LEVEL1:
goto *head2;

Level 2 C4:

.

.

.
goto *next4;

END LEVEL2:
goto *head3;



Linked Lists – schedule C4
Level 0 /* Cluster 0 */

.

.

.
goto *head1;

Level 1 C1a:
C1b:

.

.

.
goto *next1;

C2:

.

.

.
goto *next2;

C3a:
C3b:

.

.

.
goto *next3;

END LEVEL1:
goto *head2;

Level 2 C4:

.

.

.
goto *next4;

END LEVEL2:
goto *head3;



Results (seconds/1 000 000 cycles)
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Statistics

Example Size Clusters Levels C/L Threads

atds 622 156 16 9.8 138

Chorus 3893 662 22 30.1 563

mca200 5354 148 15 9.9 135

tcint 357 101 19 5.3 85

Wristwatch 360 87 13 6.7 87



Our Technique 3:
Program Dependence

Graphs



Program Dependence Graphs

Sequential Program

Sequential CFG Concurrent CDFG

Concise PDG

Concurrent Program

PDG

Sequential CFG

Sequential Code

• Ferrante, Mace &
Simons, 1984: Using
PDG

• Cytron et al., 1991:
Generating PDG

• Simons & Ferrante,
1993: External Edge

• Our approach: Natural
Concurrent Programs



PDG - Program Dependence Graph

b = 0 b == 0

0

c = 1

1

a == 1 d = 1

1 0

if (a == 1)

b = 0;

d = 1;

if (b == 0)

c = 1;

- fork (region)

- predicate

- statement

- - control arc

- - data arc

(partial order)



From PDG to SCFG: Trivial?

b = 0 b == 0

0

c = 1

1

a == 1 d = 1

1 0

Make it sequential directly

Execute one by one

⇒

a == 1

b = 0

1

b == 0

0

c = 1

1

d = 1

0

EXIT



From PDG to SCFG: Non-trivial

Test A

C = 1

10

A = 1

C = C+1

Fork

Test B

1

0

No way to be sequential unless

to add guard variable or copy

⇒

V = 1

A = 1

V = 0

Test A

Test B

1 0

Test V

0 C = 1

1

C = C+1

0

EXIT

1



An Example: Reconstructing PDG 0

Test A

C = 1

10

A = 1

C = C+1

Fork

Test B

1

0

orig Fork Test B A = 1 Test A C = 1 C = C+1

copy - - - - - -



An Example: Reconstructing PDG 1

Test A

C = 1

10

A = 1

C = C+1

Fork

Test B

1

0

Fork

orig Fork Test B A = 1 Test A C = 1 C = C+1

copy Fork - - - - -



An Example: Reconstructing PDG 2

Test A

C = 1

10

A = 1

C = C+1

Fork

Test B

1

0

Fork

Test B

orig Fork Test B A = 1 Test A C = 1 C = C+1

copy Fork Test B - - - -



An Example: Reconstructing PDG 3

Test A

C = 1

10

A = 1

C = C+1

Fork

Test B

1

0
A = 1

Fork

Test B

1

orig Fork Test B A = 1 Test A C = 1 C = C+1

copy Fork Test B A = 1 - - -



An Example: Reconstructing PDG 4

Test A

C = 1

10

A = 1

C = C+1

Fork

Test B

1

0
A = 1 Test A

Fork

Test B

1

orig Fork Test B A = 1 Test A C = 1 C = C+1

copy Fork Test B A = 1 Test A - -



An Example: Reconstructing PDG 5

Test A

C = 1

10

A = 1

C = C+1

Fork

Test B

1

0
A = 1 Test A

C = 1

10

Fork

Test B

1

orig Fork Test B A = 1 Test A C = 1 C = C+1

copy Fork Test B A = 1 Test A C = 1 -



An Example: Reconstructing PDG 6

Test A

C = 1

10

A = 1

C = C+1

Fork

Test B

1

0
V = 1 Test A

Test V

C = 1

1 0

Fork

Test B

V = 0

0 1

A = 1

orig Fork Test B A = 1 Test A C = 1 C = C+1

copy Fork Test V A = 1 Test A C = 1



An Example: Reconstructing PDG 6

Test A

C = 1

10

A = 1

C = C+1

Fork

Test B

1

0
V = 1 Test A

Test V

C = 1

1 0

C = C+1

Fork

Test B

V = 0

0 1

0

1

A = 1

orig Fork Test B A = 1 Test A C = 1 C = C+1

copy Fork Test V A = 1 Test A C = 1 C = C+1



An Example: Whole process

Test A

C = 1

10

A = 1

C = C+1

Fork

Test B

1

0

V = 1 Test A

Test V

C = 1

1 0

C = C+1

Fork

Test B

V = 0

0 1

0

1

A = 1

V = 1

A = 1

V = 0

Test A

Test B

1 0

Test V

0 C = 1

1

C = C+1

0

EXIT

1

if (B){

V = 1;

A = 1;

}

else

V = 0;

if (A)

C = 1;

if (V)

{}

else

C = C + 1;



More complex situations:

converge control flow
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More complex situations:

more forks & more data flow
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Experimental Results
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Summary



What To Understand About Esterel

Synchronous model of time

• Time divided into sequence of discrete instants

• Instructions either run and terminate in the
sameinstant or explicitly in later instants

Idea of signals and broadcast

• “Variables” that take exactly one value each instant
and don’t persist

• Coherence rule: all writers run before any readers

Causality Issues

• Contradictory programs

• How Esterel decides whether a program is correct



What To Understand About Esterel

Compilation techniques

Automata: Fast code, Doesn’t scale

Netlists: Scales well, Slow code, Good for causality

Control-flow: Scales well, Fast code, Bad at causality

Discrete Events: Scales well, Fast code, Better with more
concurrency

PDG: Scales well, best yet for many examples


