
Synchronous Reactive Systems

Stephen Edwards

http://www.eecs.berkeley.edu/˜sedwards/

University of California, Berkeley

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Outline

� Synchronous Reactive Systems

� Heterogeneity and Ptolemy

� Semantics of the SR Domain

� Scheduling the SR Domain

2

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Reactive Embedded Systems

� Run at the speed of their environment

� When as important as what

� Concurrency for controlling the real world

� Determinism desired

� Limited resources (e.g., memory)

� Discrete-valued, time-varying

� Examples:

– Systems with user interfaces

� Digital Watches
� CD Players

– Real-time controllers

� Anti-lock braking systems
� Industrial process controllers

3

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

The Digital Approach

Why do we build digital systems?

� Voltage noise is unavoidable

� Discretization plus non-linearity can filter out
low-level noise completely

� Complex systems becomes predictable and
controllable

� Incredibly successful engineering practice

4

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

The Synchronous Approach

Idea: Use the same trick to filter out “time noise.”

� Noise: Uncontrollable and unpredictable
delays

� Discretization , global synchronization

� The synchrony hypothesis:

Things compute instantaneously

� Already widespread:

– Synchronous digital systems

– Finite-state machines

5

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

The Synchronous Model of Time

� Synchronous: time is an ordered sequence of
instants

� Reactive: Instants initiated by environmental
events

Time

System responds to each instant

Nothing happens between instants

� A system only needs to be “fast enough” to
simulate synchronous behavior

Time

6

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Outline

� Synchronous Reactive Systems

� Heterogeneity and Ptolemy

� Semantics of the SR Domain

� Scheduling the SR Domain

7

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Heterogeneity

Why are there so many system description
languages?

� Want a succinct description for my system.

� “Let the language fit the problem”

Bigger systems have more diverse problems; use
a fitting language for each subproblem.

Want a heterogeneous coordination scheme that
allows many languages to communicate.

8

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Heterogeneity in Ptolemy

Ptolemy: A system for rapid prototyping of
heterogeneous systems

A Ptolemy domain (model of computation):

� Set of blocks:

Atomic pieces of computation that can be
“fired” (evaluated).

A C

B

D

� Scheduler:

Determines block firing order before or during
system execution.

A B C D

9

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Schedulers Support
Heterogeneity

� Scheduler does not know block contents,
only how to fire

� Block contents may be anything

� “Wormhole”: A block in one domain that
behaves as a system in another

� Hierarchical heterogeneity: Any system may
contain subsystems described in different
domains

10

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Outline

� Synchronous Reactive Systems

� Heterogeneity and Ptolemy

� Semantics of the SR Domain

� Scheduling the SR Domain

11

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

The SR Domain

� Reactive systems need concurrency

� The synchronous model makes for
deterministic concurrency

– No “interleaving” semantics

– Events are totally-ordered

– “Before,” “after,” “at the same time” all
well-defined and controllable

� Embedded systems need boundedness;
dynamic process creation a problem

� SR system: fixed set of synchronized,
communicating processes

12

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

The SR Domain (2)

Zero-delay blocks

Instantaneous communication
with feedback

Single driver, multiple receiver channels

� Block functions may change between
instants for time-varying behavior

� Blocks may be specified in any language

13

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Zero Delay and Feedback

How to maintain determinism?

A B

Which goes first?
Need an
order-invariant
semantics

Contradictory!
Need to attach
meaning to such
systems.

14

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Dealing with Feedback

Why bother at all?
Answer: Heterogeneity

� Cycles are usually broken by delay elements
at the lowest level

� Some schemes insist on this

� False feedback often appears at higher levels

� Data dependent cycles can appear when
sharing resources

� Virtually all cycles are “false,” yet must be
dealt with.

15

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Fixed-point Semantics are Natural
for Synchronous Specifications
with Feedback

Why a fixed point?

Self-reference:
The essence of a cycle

f (xt) = xt

System function Vector of signals

(composition of at time t

block functions) (zero delay)

fixed point () stable state

determinism () unique solution

16

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Unique Least Fixed Point
Theorem

A monotonic function on a complete
partial order (with ?) has a unique
least fixed point.

What does it mean to make the system function f

monotonic and the signal values a CPO?

17

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

The Least Fixed Point of What?

A

B

C

D
fI O

Interpret as & % Take LFP

B(I; f (I)) = f (I)

A

B

C

D

B

I

O O

18

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Vector of Signals is a CPO

Values along an upward path grow more defined.

?

1 0

“Undefined”
element

More Defined

Less Defined

Incomparable

11 01 10 00

?1 1? 0? ?0

??

vector-valued extension

Formally, xv y if y is at least as defined as x.

19

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Adding ? Is Enough

Any set fa1;a2; : : : ;an; : : :g can easily be “lifted” to
give a flat partial order:

a1 a2 a3 � � � an � � �

?

A CPO for signals with pure events:

?

absent present

A CPO for valued events:

absent v1 v2 � � � vn � � �

?

Why not absentv present?

present A then ... else ... end

Violates monotonicity

20

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Monotonic Block Functions

Giving a more defined input to a monotonic
function always gives a more defined output.

?

f (?)

f (f (?))

f (f (f (?)))

f (f (f (f (?))))

Formally, xv y implies f (x)v f (y).

A monotonic function never recants (“changes its
mind”).

21

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Many Languages Use Strict
Functions, Which Are Monotonic

A strict function:

g(: : : ;?; : : :

| {z }

inputs

) = (?; : : : ;?
| {z }

outputs

)

Outside:
A strict
monotonic
function

Inside:
Simple
“function call”
semantics

Most common imperative languages only
compute strict functions.

Danger: Cycles of strict functions
deadlock—fixed point is all ?—need some
non-strict functions.

22

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Outline

� Synchronous Reactive Systems

� Heterogeneity and Ptolemy

� Semantics of the SR Domain

� Scheduling the SR Domain

23

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

A Simple Way to Find the Least
Fixed Point

?v f (?)v f (f (?))v �� � v LFP = LFP = � � �

For each instant,

1. Start with all signals at ?

2. Evaluate all blocks (in some order)

3. If any change their outputs, repeat Step 2

f0 a
f1 b

f2 c

(a;b;c) = (?;?;?)

f0(?;?;?) = (0;?;?)

f1(0;?;?) = (0;1;?)

f2(0;1;?) = (0;1;0)

f2(f1(f0(0;1;0))) = (0;1;0)

24

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

The Dependency Graph

Transform into single-output functions:

A
1

2

B
3

4

C 5

D
6

7

+

1

2

3

4

6

7

5

25

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

The Scheduling Algorithm

1. Decompose into strongly-connected
components

2. Remove a head (set of vertices) from each
SCC, leaving a tail

3. Recurse on each tail

26

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Evaluating SCCs

Split a strongly-connected graph into a head and
tail:

H

T

#

T
H

T

Good heads break T’s strong connectivity.

27

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Example

System

A
0

1

B

3

2

C

5

6

4

Graph

1 2

4

5

6

0

3

Head 1 2

Tail

4

5

6

0

3

28

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Schedules

1 2

4

5

6

0

3

4

5

6

0

3

(

head
z}|{

1 2 :

tail
z }| {

(

head
z}|{

4 :

tail
z}|{

5)
| {z }

SCC

6 (

head
z}|{

0 :

tail
z}|{

3)
| {z }

SCC

)

5 4 5 6 3 0 3 1 2 5 4 5 6 3 0 3 1 2 5 4 5 6 3 0 3

29

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Finding Good Heads

Must break strong connectivity—remove a border
of a set of vertices:

A

B

C

D

E

F

G

H

I

border of f A, B, C g

(vertices with incoming edges)

A

B

C

H

I

30

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Choosing Good Border Sets

Heuristic: “Grow” a set starting from a vertex and
greedily include the best border vertex:

1

3

4

6

7

52

Set Border

1 5

1 5 2 3

1 5 2 3

1 5 2 3 7

1 5 2 3 7 4 6

1 5 2 3 7 4 6
2 is better (3 would
increase border)

31

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Scheduling Results

0.1s

1s

10s

100s

0 20 40 60 80 100 120

exactsweep

Number of Outputs

Ti
m

e
to

C
om

pu
te

S
ch

ed
ul

e

0:1�

1�

10�

100�

1000�

S
pe

ed
up

O
ve

r
E

xa
ct

0.1s 1s 10s 100s
Time to Compute Exact

32

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

The Cost of Using the Heuristic

0% 50%

100%

150%

Increase in Cost of Schedule

0
20

40
60

80

N
um

ber
ofO

utputs

5%
10%

15%
20%

25%F
raction

ofR
uns

33

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Asymptotic Schedule Cost

1

10

100

1000

1 10 100

n

n1:5n2

Number of Outputs

O
pt

im
al

S
ch

ed
ul

e
C

os
t

34

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Conclusions

� Reactive embedded systems

– Run at the speed of their environment

– When as important as what

– Concurrent, deterministic, bounded,
discrete-valued

� The synchronous approach

– Discrete instants, globally synchronized

– Assumes instantaneous computation

� Heterogeneity in Ptolemy

– Domain: Blocks and Scheduler

– Hierarchical heterogeneity through
domain embedding

35

STEPHEN EDWARDS SYNCHRONOUS REACTIVE SYSTEMS

Conclusions (2)

� The SR domain

– Concurrent zero-delay blocks

– Semantics: the least fixed point of a
monotonic function on a CPO

– Values include “undefined” (?)

� Scheduling the SR Domain

– Use single-output dependency graph

– Decompose into SCCs; remove a head
from each; recurse

– Head is the border of the tail

– Choose a head by greedily growing a set
of vertices

– Fast, efficient. O(n1:25) execution

36

