The Sparse Synchronous Model
Stephen A. Edwards

CSGLE7 COMPUTER SCIENCE AT

Real-Time Software: Time as Important as Value

011
@5

100
1 — —| er
—1 —|T
S
L —
|
5 7

Sslang
Program

01
@9

10
@6

indino

Time modeled arithmetically Time in seconds
Can add, subtract, multiply, and
divide time intervals

Oms 50ms 100ms 150ms

Time modeled arithmetically

Time is quantized; Quantum might be
quantum not user-visible 1 MHz, 16 MHz, etc.
Integer timestamps thwart Zeno

Oms 50ms 100ms 150ms

Time modeled arithmetically Program thinks processor is
infinitely fast: execution a

Time is quantized; sequence of zero-time instants
guantum not user-visible (hence “synchronous”)

Every instruction that runs in an
instant sees the same
timestamp

Oms 50ms 100ms 150ms

FHHHHHHHHH%HWWH%HH%WFHHHHHHHWW

Time modeled arithmetically Program thinks processor is
o _ infinitely fast: execution a

Time is quantized; sequence of zero-time instants

quantum not User-VISIb|e (hence "Synchronous")

Nothing happens in
most instants (hence “sparse”)

Oms 50ms 100ms 150ms

FHHHHHHHHH%HWWH%HH%WFHHHHHHHWW

blink led = led is mutable; can be scheduled
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms 100ms 150ms

W%%%%%%%W

led =0

blink led = led is mutable; can be scheduled
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms 100ms 150ms

led =0

blink led = led is mutable; can be scheduled
loop Infinite loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms 100ms 150ms

led =0

blink led = led is mutable; can be scheduled
loop Infinite loop
after ms 50,
led <— not (deref led)
wait led

Schedule a future update

Oms 50ms 100ms 150ms

led =0

blink led = led is mutable; can be scheduled
loop Infinite loop
after ms 50,
led <— not (deref led)
wait led

Schedule a future update

led « 1
Oms 50ms 100ms 150ms

led =0

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

led + 1
Oms 50ms

led =0

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

led + 1
Oms 50ms

led

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

led + 1
Oms 50ms

led

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

led + 1
Oms 50ms

led

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

led + 1
Oms 50ms

led

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

led « 1
Oms 50ms

led

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led |

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led |

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led |

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led |

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led |

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

led < 0
100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led |

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

led < 0
100ms 150ms

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

led < 0
100ms 150ms

led

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

led < 0
100ms 150ms

led

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

100ms 150ms

led

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

led « 1
100ms 150ms

led

blink led =
loop
after ms 50,
led <— not (deref led)
wait led

Oms 50ms

led is mutable; can be scheduled

Infinite loop
Schedule a future update

Wait for a write on a variable

led « 1
100ms 150ms

led

Concurrent Code Executes in Syntactic Order for Determinism

add2 x = x <- deref x + 2 /! Add 2 as a side-effect

mult4 x = x <- deref a x 4 // Multiply by 4 as a side-effect

Concurrent Code Executes in Syntactic Order for Determinism

add2 x = x <- deref x + 2 /! Add 2 as a side-effect

mult4 x = x <- deref a x 4 // Multiply by 4 as a side-effect

main =
let a

new 1 /! Allocate a new mutable variable

Concurrent Code Executes in Syntactic Order for Determinism

add2 x = x <- deref x + 2 /! Add 2 as a side-effect

mult4 x = x <- deref a x 4 // Multiply by 4 as a side-effect
main =

let a = new 1 /1 Allocate a new mutable variable

par add2 a // Runs first:a <+ 1+2=73

mult4 a // Runs second: a +— 3 x4 =12

Concurrent Code Executes in Syntactic Order for Determinism

add2 x = x <- deref x + 2 /! Add 2 as a side-effect

mult4 x = x <- deref a x 4 // Multiply by 4 as a side-effect
main =
let a = new 1 /1 Allocate a new mutable variable
par add2 a // Runs first:a <+ 1+2=73
mult4 a /] Runs second: a +— 3 x4 =12
par mult4 a // Runs third: a + 12 x 4 = 48

add2 a /! Runs fourth: a + 48 +2 =50

Concurrent Code May Block on wait

blink led period =

let timer = new () // void/unit scheduled variable
loop
led <- not (deref led) /! Toggle led now
after period, timer <- () // Wait for the period
wait timer
main led =

par blink led (ms 50)
blink led (ms 30)
blink led (ms 20) /1 led toggles three times at time 600

FDL 2020: C API for SSM Runtime

Basic trick: Two priority queues

First queue for scheduled variable update events

Second queue for code to be executed in the current instant

A wait statement reminds the variable that something is waiting on it

When a variable is written, it schedules the waiting code in the second queue

FDL 2020: C API for SSM Runtime

/1 Routine activation record management

rar_t *enter(size_t size, void (*step)(rar_t *), rar_t *caller,
uint32_t priority, uint8_t depth)

void call(rar_t *rar)

void fork(rar_t *rar)

void leave(rar_t *rar, size_t size)

/1 Variable management

void initialize_type(cv_type_t *var, type val) /] new
void assign_type(cv_type_t *var, uint32_t priority, type val) // <-
void later_type(cv_type_t *var, uint64_t time, type val) /] after

bool event_on(cv_t *var)

/1 Trigger management (for wait statements)
void sensitize(cv_t *var, trigger_t *trigger)
void desensitize(trigger_t *trigger)

FDL 2020: C APl Example

rar_examp_t *enter_examp(rar_t *caller, uint32_t priority, unit8_t depth, cv_int_t *a) {

rar_examp_t *rar = (rar_examp_t *)
enter(sizeof(rar_examp_t), step_examp, caller, priority, depth); eXamp a =
rar->a = a; /1 Store pass-by-reference argument
rar->trigl.rar = (rar_t *) rar; /1 Initialize our trigger let loc = new 0
3 .
void step_examp(rar_t xgen_rar) { walt a
rar_examp_t *rar = (rar_examp_t *) gen_rar;
switch (rar->pc) { loc <- 42
case 0:
initialize_int(&rar->loc, 0); /1 let loc = new 0 after ms 10, a <- 43
sensitize((cv_t *) rar->a, &rar->trigl); /] wait a
rar->pc = 1; return; par foo 42 loc
case 1:
if (event_on((cv_t *) rar->a)) { /1 if @a then par -FOO 40 lOC
desensitize(&rar->trigil); /1 De-register our trigger
} else return; bar 42
assign_int(&rar->loc, rar->priority, 42); /1 loc <- 42
later_int(rar->a, now+10000, 43); /1 after 10ms, a <- 43
rar->pc = 2; /1 Single routine call: foo 42 loc
call((rar_t *) enter_foo((rar_t *) rar, rar->priority, rar->depth, 42, &rar->loc));
return;
case 2: /1 Concurrent call: par foo 40 loc; bar 42
{ uint8_t new_depth = rar->depth - 1; /1 2 children

uint32_t pinc = 1 << new_depth;
uint32_t new_priority = rar->priority;
fork((rar_t *) enter_foo((rar_t *) rar, new_priority, new_depth, 40, &rar->loc));
new_priority += pinc;
fork((rar_t *) enter_bar((rar_t *) rar, new_priority, new_depth, 42)); }
rar->pc = 3; return;
case 3: ; }
leave((rar_t *) rar, sizeof(rar_examp_t)); /1 Terminate

Y

MEMOCODE 2022: Scoria: SSM Embedded in Haskell

sigGen :: (?0ut@ :: Ref GPIO) => Ref Word64 -> SSM ()
sigGen hperiod = routine $ while true (do
after (ns (deref hperiod)) ?out@ (not' (deref ?0ut®))
wait ?out@)

remoteControl :: (?ble :: BLE) => Ref Word64 -> SSM ()
remoteControl hperiod = routine $ do
enableScan ?ble
while true (do
wait (scanref ?ble)
if deref (scanref ?ble) ==. 0
then hperiod <~deref hperiod * 2
else hperiod <~max' (deref hperiod /. 2) 1)

entry :: (?ble :: BLE, ?0ut@ :: Ref GPIO) => SSM ()
entry = routine $ do
honeriod <- var (time?2ns (secs 1))

MEMOCODE 2022: Timer and Interrupts Drive the Runtime

g Input ISR |F1—">
---- —schedule—>»
External Ieyyl 21| 13S) 136] l4e| 148
Inputs Tick
Input queue loop Event queue
-—-Input ISR —> ——
pOSt t tick
g } Semﬁore A (—I?
A
pclast
Alarm ISR

Timer @ <—set alarm

TCRS 2023: SSM as a Lua Library

local ssm = require("ssm")

function ssm.pause(d)
local t = ssm.Channel {}
t:after(ssm.msec(d), { go = true })
ssm.wait(t)

end

function ssm.fib(n)
if n < 2 then
ssm.pause(1)
return n
end
local r1 = ssm.fib:spawn(n - 1)
local r2 = ssm.fib:spawn(n - 2)
local rp = ssm.pause:spawn(n)
ssm.wait { r1, r2, rp }
return r1[1] + r2[1]
end

local n = 10

MEMOCODE 2023: The RP2040

2 ARM Cortex MO+
processor cores,
133 MHz

264K SRAM

Off-chip QSPI flash
(e.g., 2 MB)

30 GPIO pins

2 Programmable
I/0 Blocks (P1O)

US$1 quantity 1

10s Clock RE2040
Internal
generation
oscillator
rystal
- | PLL
< >
< » SWD
SIO DMA
I
Peripherals
Bus Fabric
PWM Power on state
UART x2. machine
GPIO

< > pool Timer Sysctrl ‘ ‘ ‘ | | |

RTC Sysinfo I I

12C x2 Watchdog PIO0|PIOT SRAM| || USB

ADC&TS Bl SRAM
. Lisram
J

< »| QSPI

:

Core Supply Regulator

—

MEMOCODE 2023: A PIO Block

4 "State Machines”
From TX FIFO —->{ Out Shift ‘ ‘ Scratch X ‘
32-instruction —> ToGPIO
memory (shared) To RX FIFO <——{ In Shift ‘ ‘ Scratch Y ‘
9_ 'nStFUCt'?tn§ To instruction 4__{ PC ‘ ‘ Clock Div ‘
(jump, wait, in, memory From GPIO
out, etc.) From instruction _>{ Gontrol Logic ‘
. . memory (or bus)
4 32-bit registers

Single-cycle I
execution IRQ Set, Clear, Status

MEMOCODE 2023: Sslang on an RP2040

PIOO

RP2040 Platform Runtime SSM Runtime
PIO Input Queue PIO0
RX FIFO DMA prQ SSM event queue
Pins —» |3]5]1 > -
@4les|e1 e T ime | TXHFO

16 MHZCL) ‘D

32 bit -

z
Capture SM Interrupt Routines Input Queue sslang 32 bit tl-j
slals tick Program I
i i Alarm SM
Peripheral ISR e6les @Zﬂ IT|ck
oop
IRQ4
wait A
IRQO —>
post F:j
PIO ISR TX FIFO
System Timer Semaphore — 'Dﬁg, Pins
1MHz - _—
64 bit % Alarm SR Buffer SM
f set_alarm ‘

Latency: 10-20ps Accuracy: 62.5ns/ 16 MHz

sleep delay =
let timer = new ()
after delay, timer <- ()
wait timer

waitfor var value =
while deref var != value
wait var e
debounce delay input press =
loop
waitfor input @
press <= ()
sleep delay R R R
waitfor input 1 . : ’ : : : :
sleep delay

pulse period press output =

loop .
wait press [2\'.. T R S S S SR TN S S PP
output <- 1 ©fE 2.00V Ch2[2.00V M[20.0us A| Ch1 v 1.52V
after period, output <- @

wait output 21 ps Button-to-LED latency

buttonpulse button led =
let press = new ()
par debounce (ms 10) button press
pulse (ms 200) press led

MEMOCODE 2023: 100 ps pulse: C vs Sslang Latency

. reaction time

fAT 12.0us

(2]
' (@ 1.80ps
g\m—ul »»»»»» Sslang 13.8US © * Se———————————
! reactlon tlme . . . ;
Ch XTI 'c'hz'| g M‘z‘o s/ A'| I édv]

Ch3| 5.00V

MEMOCODE 2023: 100 ps pulse: C vs Sslang Falling edge

g @ 1.41us | | o : ;
Y TR RS R R 4l ol
Input - : Input } ;
A 960ns o A 62.6ns = 1/16MHz
..................... o
Output I H Outpu H
© 2f T — (sslang) Bf... i 0.
O 2.00V Ch2[2.00V M[400ns| A Ch1 % 1.88V @ 2.00V |Cha| 2.00v M[10.0ns| A Ch1 \ 1.88V

C falling edge: Sslang falling edge:
1.41 ps late, 960 ns jitter O ps late, 62.6 ns jitter (16 MHz clock)

