
SSlang: A Sparse Synchronous
Language for Hard Real-Time

Tasks
Stephen A. Edwards et al.

Computer Science at
Columbia University

IFIP WG2.8 Functional Programming
May 2022, Cornell Tech, Roosevelt Island, NYC

gcd a b = // Inferred types
if a == b // Indentation for grouping

a // Everything is an expression
else

if a < b // User-defined binary infix operators
gcd a (b − a) // Juxtaposition for function calls

else
gcd (a − b) b

gcd a b c = // gcd : &Int→ &Int→ &Int→ ()
while deref a != deref b // While loops

if deref a < deref b // OCaml-like references
b <− deref b − deref a // Assignment to references

else
a <− deref a − deref b

c <− deref a // Sequencing

add2 a = a <− deref a + 2
mult4 a = a <− deref a * 4

main =
let a = new 1 // Allocate and name a new variable
par add2 a // Parallel function calls

mult4 a // execute in prescribed order
// a is (1 + 2) * 4 = 12 here

a <− 1
par mult4 a

add2 a
// a is (1 * 4) + 2 = 6 here

blink led =
loop // Infinite loop
after ms 50, led <− 1 // Schedule future variable update
wait led // Block on variable update
after ms 50, led <− 0
wait led

blink led =
while 1

fib

after ms 50, led <− 1
wait led
after ms 50, led <− 0
wait led

blink led =
while 1

fib 19
after ms 50, led <− 1
wait led
after ms 50, led <− 0
wait led

blink led =
while 1

fib 23
after ms 50, led <− 1
wait led
after ms 50, led <− 0
wait led

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led 0

led← 1

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led 0

led← 1

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 1

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 1

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 1

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 1

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 1

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 1

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

led← 1

0ms 50ms 100ms 150ms

blink led =
loop

after ms 50, led <- 1
wait led
after ms 50, led <- 0
wait led

led

0

blink led period =
let event = new () // Unit-valued variables pure events
loop

led <− 1 − deref led
after period, event <− () // Schedule pure event
wait event // Wait on write, not change

main led =
par blink led (ms 50)

blink led (ms 30)
blink led (ms 20) // LED may toggle three times

I Deterministic concurrency

I Immutable and mutable values

I Algebraic data types, pattern matching

I Compiles to C for portability across microcontrollers

I Heap-resident function activation records

I Reference-counted heap, inspired by Perceus [PLDI 2021]

I No true parallelism (for now)

I No gradual typing (sorry)

Priority queue of events (time, variable, value), ordered by time

Priority queue of threads, ordered by priority

tick()
While there are queued events now,

Dequeue event e = (now, v,n)
Update variable v with new value n
Schedule each thread blocked on variable v

While there are ready threads,
Dequeue the lowest-priority thread t
Run thread t from where it last blocked,

which may write variables immediately to trigger threads now,
or may schedule future variable update events

One event per variable: scheduling an update deletes any outstanding

Only “later”-priority threads are scheduled when a thread writes to a variable.

SSlang vs. Esterel

[Berry and Gonthier, SCP 1992]

SSLang Esterel

Deterministic Yes Yes

Time Sparse Dense

Within instants Totally-ordered Constructive

Runtime Dynamic Event Queues Statically Scheduled

Topology Dynamic, recursive Static

SSlang vs. Ptides

[Zhao, Liu, and Lee, RTAS 2007] [Zou Ph.D 2011]

SSlang Ptides

Between instants Discrete-event Discrete-Event

Within instants Totally-ordered Discrete-Event

Topology Dynamic, recursive Static

Implementation Single-threaded Distributed

SSM runtime libSystem tick driver

Input ISR

Input ISR
Input queue

Tick
loop

Semaphore

set alarmTimer

External
Inputs

Event queue

wait

post

Alarm ISR

schedule

post

1:351:271:24 1:36

tick

1:42 1:49

https://github.com/ssm-lang/sslang

https://github.com/ssm-lang/sslang

