
The Sparse Synchronous Model
Stephen A. Edwards

Computer Science at
Columbia University

Synchron 2020, November 26, 2020

See also Edwards and Hui, FDL 2020



0ms 50ms 100ms 150ms

Time modeled arithmetically

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led 0



0ms 50ms 100ms 150ms

Time modeled arithmetically

Quantized; quantum
not user-visible

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led 0



0ms 50ms 100ms 150ms

Time modeled arithmetically

Quantized; quantum
not user-visible

Infinitely fast processor model:
Program execution a series of
zero-time instants
(hence “synchronous”)

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led 0



0ms 50ms 100ms 150ms

Time modeled arithmetically

Quantized; quantum
not user-visible

Infinitely fast processor model:
Program execution a series of
zero-time instants
(hence “synchronous”)

Nothing happens in
most instants (hence “sparse”)

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led 0

led← 1



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led 0

led← 1



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 1



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 1



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 1



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 1



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 1



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 1



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0

led← 1



0ms 50ms 100ms 150ms

led is a pass-by-reference
integer that can be scheduled

Infinite loop

Schedule a future update

Wait for a write on a variable

main(led : Ref (Sched Int)) =
loop

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led

led

0



Missing Deadlines Doesn’t Affect Period

main(led : Ref (Sched Int)) =
loop

fib r

50 ms later led <− 1
wait led
50 ms later led <− 0
wait led



Missing Deadlines Doesn’t Affect Period

main(led : Ref (Sched Int)) =
loop

fib 19 r
50 ms later led <− 1
wait led
50 ms later led <− 0
wait led



Missing Deadlines Doesn’t Affect Period

main(led : Ref (Sched Int)) =
loop

fib 23 r
50 ms later led <− 1
wait led
50 ms later led <− 0
wait led



Recursive subroutines

toggle(led : Ref (Sched Int)) =
led <− 1 − led

slow(led : Ref (Sched Int)) =
let e1 = Occur : Sched Event
loop

toggle led
30 ms later e1 <− Occur
wait e1

fast(led : Ref (Sched Int)) =
let e2 = Occur : Sched Event
loop

toggle led
20 ms later e2 <− Occur
wait e2

main(led : Ref (Sched Int)) =
par slow led

fast led



Pure events like “void” or “unit”

toggle(led : Ref (Sched Int)) =
led <− 1 − led

slow(led : Ref (Sched Int)) =
let e1 = Occur : Sched Event

loop
toggle led
30 ms later e1 <− Occur
wait e1

fast(led : Ref (Sched Int)) =
let e2 = Occur : Sched Event
loop

toggle led
20 ms later e2 <− Occur
wait e2

main(led : Ref (Sched Int)) =
par slow led

fast led



Function call

toggle(led : Ref (Sched Int)) =
led <− 1 − led

slow(led : Ref (Sched Int)) =
let e1 = Occur : Sched Event
loop

toggle led

30 ms later e1 <− Occur
wait e1

fast(led : Ref (Sched Int)) =
let e2 = Occur : Sched Event
loop

toggle led
20 ms later e2 <− Occur
wait e2

main(led : Ref (Sched Int)) =
par slow led

fast led



“Occur”: only value of a pure event

toggle(led : Ref (Sched Int)) =
led <− 1 − led

slow(led : Ref (Sched Int)) =
let e1 = Occur : Sched Event
loop

toggle led
30 ms later e1 <− Occur
wait e1

fast(led : Ref (Sched Int)) =
let e2 = Occur : Sched Event
loop

toggle led
20 ms later e2 <− Occur
wait e2

main(led : Ref (Sched Int)) =
par slow led

fast led



Concurrent function calls

toggle(led : Ref (Sched Int)) =
led <− 1 − led

slow(led : Ref (Sched Int)) =
let e1 = Occur : Sched Event
loop

toggle led
30 ms later e1 <− Occur
wait e1

fast(led : Ref (Sched Int)) =
let e2 = Occur : Sched Event
loop

toggle led
20 ms later e2 <− Occur
wait e2

main(led : Ref (Sched Int)) =
par slow led

fast led



Concurrent Routines Execute in Syntactic Order for Determinism

foo(a : Ref Int) =
a <− a + 2

bar(a : Ref Int) =
a <− a ∗ 4

main()
let a = 1 : Int
par foo a

bar a

// foo runs first: a = 12 = (1 + 2) * 4
par bar a

foo a
// bar runs first: a = 50 = (12 * 4) + 2



Concurrent Routines Execute in Syntactic Order for Determinism

foo(a : Ref Int) =
a <− a + 2

bar(a : Ref Int) =
a <− a ∗ 4

main()
let a = 1 : Int
par foo a

bar a

// foo runs first: a = 12 = (1 + 2) * 4
par bar a

foo a
// bar runs first: a = 50 = (12 * 4) + 2



Concurrent Routines Execute in Syntactic Order for Determinism

foo(a : Ref Int) =
a <− a + 2

bar(a : Ref Int) =
a <− a ∗ 4

main()
let a = 1 : Int
par foo a

bar a
// foo runs first: a = 12 = (1 + 2) * 4

par bar a
foo a

// bar runs first: a = 50 = (12 * 4) + 2



Concurrent Routines Execute in Syntactic Order for Determinism

foo(a : Ref Int) =
a <− a + 2

bar(a : Ref Int) =
a <− a ∗ 4

main()
let a = 1 : Int
par foo a

bar a
// foo runs first: a = 12 = (1 + 2) * 4
par bar a

foo a

// bar runs first: a = 50 = (12 * 4) + 2



Concurrent Routines Execute in Syntactic Order for Determinism

foo(a : Ref Int) =
a <− a + 2

bar(a : Ref Int) =
a <− a ∗ 4

main()
let a = 1 : Int
par foo a

bar a
// foo runs first: a = 12 = (1 + 2) * 4
par bar a

foo a
// bar runs first: a = 50 = (12 * 4) + 2



SSM vs. Esterel

[Berry and Gonthier, SCP 1992]

SSM Esterel

Deterministic Yes Yes

Time Sparse Dense

Within instants Totally-ordered Constructive

Compilation Separate Whole-program

Runtime Dynamic Event Queues Statically Scheduled

Topology Dynamic, recursive Static



SSM vs. Esterel

[Berry and Gonthier, SCP 1992]

SSM Esterel

Deterministic Yes Yes

Time Sparse Dense

Within instants Totally-ordered Constructive

Compilation Separate Whole-program

Runtime Dynamic Event Queues Statically Scheduled

Topology Dynamic, recursive Static



SSM vs. Esterel

[Berry and Gonthier, SCP 1992]

SSM Esterel

Deterministic Yes Yes

Time Sparse Dense

Within instants Totally-ordered Constructive

Compilation Separate Whole-program

Runtime Dynamic Event Queues Statically Scheduled

Topology Dynamic, recursive Static



SSM vs. Esterel

[Berry and Gonthier, SCP 1992]

SSM Esterel

Deterministic Yes Yes

Time Sparse Dense

Within instants Totally-ordered Constructive

Compilation Separate Whole-program

Runtime Dynamic Event Queues Statically Scheduled

Topology Dynamic, recursive Static



SSM vs. Esterel

[Berry and Gonthier, SCP 1992]

SSM Esterel

Deterministic Yes Yes

Time Sparse Dense

Within instants Totally-ordered Constructive

Compilation Separate Whole-program

Runtime Dynamic Event Queues Statically Scheduled

Topology Dynamic, recursive Static



SSM vs. Esterel

[Berry and Gonthier, SCP 1992]

SSM Esterel

Deterministic Yes Yes

Time Sparse Dense

Within instants Totally-ordered Constructive

Compilation Separate Whole-program

Runtime Dynamic Event Queues Statically Scheduled

Topology Dynamic, recursive Static



SSM vs. Esterel

[Berry and Gonthier, SCP 1992]

SSM Esterel

Deterministic Yes Yes

Time Sparse Dense

Within instants Totally-ordered Constructive

Compilation Separate Whole-program

Runtime Dynamic Event Queues Statically Scheduled

Topology Dynamic, recursive Static



SSM vs. Ptides

[Zhao, Liu, and Lee, RTAS 2007]

SSM Ptides

Between instants Discrete-event Discrete-Event

Within instants Totally-ordered Discrete-Event

Topology Dynamic, recursive Static

Implementation Single-threaded Distributed

[Zou Ph.D 2011] See also Lee, Lohstroh et al. Linga Franca



SSM vs. Ptides

[Zhao, Liu, and Lee, RTAS 2007]

SSM Ptides

Between instants Discrete-event Discrete-Event

Within instants Totally-ordered Discrete-Event

Topology Dynamic, recursive Static

Implementation Single-threaded Distributed

[Zou Ph.D 2011] See also Lee, Lohstroh et al. Linga Franca



SSM vs. Ptides

[Zhao, Liu, and Lee, RTAS 2007]

SSM Ptides

Between instants Discrete-event Discrete-Event

Within instants Totally-ordered Discrete-Event

Topology Dynamic, recursive Static

Implementation Single-threaded Distributed

[Zou Ph.D 2011] See also Lee, Lohstroh et al. Linga Franca



SSM vs. Ptides

[Zhao, Liu, and Lee, RTAS 2007]

SSM Ptides

Between instants Discrete-event Discrete-Event

Within instants Totally-ordered Discrete-Event

Topology Dynamic, recursive Static

Implementation Single-threaded Distributed

[Zou Ph.D 2011] See also Lee, Lohstroh et al. Linga Franca



SSM vs. Ptides

[Zhao, Liu, and Lee, RTAS 2007]

SSM Ptides

Between instants Discrete-event Discrete-Event

Within instants Totally-ordered Discrete-Event

Topology Dynamic, recursive Static

Implementation Single-threaded Distributed

[Zou Ph.D 2011] See also Lee, Lohstroh et al. Linga Franca



Compared to Dynamic Ticks

Haxlenden, Bourke, Girault, FDL 2017

Dynamic ticks uses repeated “min” to decide “how long to wait”

SSM uses an event (priority) queue to decide this

Dynamic Ticks uses the richer, but harder-to-compile Esterel semantics



Compared to Boussinot’s Work

Boussinot’s schedule-based-on-syntactic-order inspired the SSM policy

Boussinot: Round-robin cooperative scheduler; SSM:
totally-ordered-within-an-instant

Less concern for real-time behavior; more an operational replacement
for Esterel-style semantics



https://github.com/sedwards-lab/peng


