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Recursive subroutines

toggle(led : Ref (Sched Int)) =
led <− 1 − led

slow(led : Ref (Sched Int)) =
let e1 = Occur : Sched Event
loop

toggle led
30 ms later e1 <− Occur
wait e1

fast(led : Ref (Sched Int)) =
let e2 = Occur : Sched Event
loop

toggle led
20 ms later e2 <− Occur
wait e2

main(led : Ref (Sched Int)) =
par slow led

fast led



Pure events like “void” or “unit”

toggle(led : Ref (Sched Int)) =
led <− 1 − led

slow(led : Ref (Sched Int)) =
let e1 = Occur : Sched Event

loop
toggle led
30 ms later e1 <− Occur
wait e1

fast(led : Ref (Sched Int)) =
let e2 = Occur : Sched Event
loop

toggle led
20 ms later e2 <− Occur
wait e2

main(led : Ref (Sched Int)) =
par slow led

fast led



Function call
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“Occur”: only value of a pure event
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Concurrent function calls

toggle(led : Ref (Sched Int)) =
led <− 1 − led

slow(led : Ref (Sched Int)) =
let e1 = Occur : Sched Event
loop

toggle led
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wait e1
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loop
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Concurrent Routines Execute in Syntactic Order for Determinism

foo(a : Ref Int) =
a <− a + 2

bar(a : Ref Int) =
a <− a ∗ 4

main()
let a = 1 : Int
par foo a

bar a

// foo runs first: a = 12 = (1 + 2) * 4
par bar a

foo a
// bar runs first: a = 50 = (12 * 4) + 2
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Compared to Dynamic Ticks

Haxlenden, Bourke, Girault, FDL 2017

Dynamic ticks uses repeated “min” to decide “how long to wait”

SSM uses an event (priority) queue to decide this

Dynamic Ticks uses the richer, but harder-to-compile Esterel semantics



Compared to Boussinot’s Work

Boussinot’s schedule-based-on-syntactic-order inspired the SSM policy

Boussinot: Round-robin cooperative scheduler; SSM:
totally-ordered-within-an-instant

Less concern for real-time behavior; more an operational replacement
for Esterel-style semantics



https://github.com/sedwards-lab/peng


