Haskell to Hardware and Other Dreams

Stephen A. Edwards
Columbia University

June 12, 2018

ceYNovemberal

Moore's Law

16

151 ,/’
= 14r //
ﬂg 131 s]
S :ZI r S “The complexity for
[7 «
w22 10} / minimum component
[L 7 H
w32 3l 7 costs has increased at a
=
s T s rate of roughly a factor
O 6
Sew 5| of two per year.”
== 4r
Sa 3
=y ef Closer to every 24
o months

Gordon Moore, Cramming More Components onto Integrated Circuits,
Electronics, 38(8) April 19, 1965.

Four Decades of Microprocessors Later...

7
10 ! : : : Transistors
‘ (thousands)
Single-Thread
Performance
(SpecINT x 103)

Frequency (MHz)
Typical Power
(Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Source: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

What Happened in 2005?

Pentium 4 Core 2 Duo Xeon E5

2000 2006 2012
1 core 2 cores 8 cores

Transistors: 42 M 291 M 2.3G

Heat Flux in IBM Mainframes: A Familiar Trend

Module Heat Flux Trend (watts/em2)

End of Bipolar
Water Cooling

14 13
IBM ES9000 \.
12
Pentium 4 Xeon D L
10
Bluafire
Itanium 2! ..
g8 Fujitsu VP2000 GR
IBM 20805 IBM GP
” wr T BMRs o o
Fujitsu M-780 | IEM RY7 g @ ontium 4
Pulsar
4 1BM 2090 MG o
CDC Cyber 205
Start of Water IBI’:!B&O;‘;'S% IBM RY4 o
2 Cooling Apache
IEM 370 IijauggBM'a [] /" g Morced
Vacuum ® § @y fontium i (OSIF)
Q . T T T T
1950 1960 1970 1980 1990 2000 2010

Year of Announcement

Schmidt. Liquid Cooling is Back. Electronics Cooling. August 2005.

Liquid Cooled Apple Power Mac G5

2004 CMOS 1.2 kW

Dally: Calculation Cheap; Communication Costly

64b FPU
0.1mn?
50p) /op
1.5GHz

64b Imm
Channel
25p) /word

10mm 250pJ, 4 cycles

64b Off-Chip
Channel
1nJ/word

“Chips are power
limited and most power
is spent moving data

Performance =
Parallelism

Efficiency = Locality

Bill Dally's 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance; Locality for Efficiency

Dally: “Single-thread processors are
in denial about these two facts”

We need

different programming paradigms
and

different architectures

on which to run them.

o L « 38 . b
DarkiSilicon™™ ae wee . g
@ V2 e .0 BE Be
*~ g -
oY aad o -
PR san Pe o & %
s BR°
q
=® B PR
']
8.
s We L]
B cs
e DA &a
i 'y
I "E ‘
f’.:’ 8 m@8 _E 8s
’ i * up
] ’ * 30 Bes "R B

=]
0 -
rd &"e &
8 .32
"1 »
1]
[1]
Ed
aE
g 459 A2
£}
-

Deterministic Concurrency: A Fool’s Errand?

What Models of Computation Provide Determinstic Concurrency?

W

Synchrony The Columbia Esterel Compiler
2001-2006

SHIM

Kahn Networks The SHIM Model/Language
2006-2010

The Lambda Calculus This Project
2010~

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

—

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

v

Why Functional?

» Referential transparency simplifies
formal reasoning about programs

» Inherently concurrent and
deterministic
(Thank Church and Rosser)

» Immutable data makes it vastly
easier to reason about memory in
the presence of concurrency

To Implement Real Algorithms, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy

Recursion

What Do We Do With Recursion?
Compile it into tail recursion with explicit stacks

[Zhai et al., CODES+ISSS 2015]

Definitional Interpreters for Higher-Order Programming Languages

John C. Reynolds, Syracuse University

[Proceedings of the ACM Annual Conference, 1972]

Really clever idea:

Sophisticated language ideas such as recursion and
higher-order functions can be implemented using simpler
mechanisms (e.g., tail recursion) by rewriting.

Removing Recursion: The Fib Example

fib n = case n of
1 — 1
2 -1
n — fib (n—-1) + fib (n-2)

Transform to Continuation-Passing Style

fibk n k = case n of
1 — k1
2 — k1

n — fibk (n—-1) (An1 —

fibk (n-2) (An2 —
k (n1 + n2)))

fib n fibk n (Ax — x)

Name Lambda Expressions (Lambda Lifting)

fiok n k =case n of
1 — k1
2 — k1

n — fibk (n-1) (k1 n k)

k1 n knl= fibk (n—2) (k2 n1 k)
k2 n1kn2= k (n1 +n2)

kO X = X

fib n = fibk n kO

Represent Continuations with a Type

data Cont = KO | K1 Int Cont | K2 Int Cont

fibk n k = case (n,k) of

(1, k) - kkk1

(2, k) - kkk1

(n, k) — fibk (n=1) (K1 n k)
kk k a = case (k, a) of

((K1n k), n1) — fibk (n-2) (K2 n1 k)
(K2 n1 k), n2) — kk k (n1 + n2)
(KO, X) — X

fib n = fibk n KO

Merge Functions

data Cont = KO | K1 Int Cont | K2 Int Cont
data Call = Fibk Int Cont| KK Cont Int

fibk z = case z of
(Fibk 1 k) — fibk (KKk 1)
(Fibk 2 k) — fibk (KK k 1)
(Fibk n k) — fibk (Fibk (n—1) (K1 n k))

(KK (K1 n k) n1) — fibk (Fibk (n—-2) (K2 n1 k))
(KK (K2 n1 k) n2) — fibk (KK k (n1 + n2))
(KK KO X) — X

fib n = fibk (Fibk n KO)

Add Explicit Memory Operations

read :: CRef — Cont

write :: Cont — CRef

data Cont = KO | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

fibk z = case z of
(Fibk 1 k) — fibk (KK (read k) 1)
(Fibk 2 k) — fibk (KK (read k) 1)
(Fibk n k) — fibk (Fibk (n—1) (write (K1 n k)))

(KK (K1 n k) n1) — fibk (Fibk (n—2) (write (K2 n1 k)))
(KK (K2 n1 k) n2) — fibk (KK (read k) (n1 + n2))
(KK KO X) — X

fib n = fibk (Fibk n (write K0))1

Functional IR to Dataflow

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s = Ip
case read Ip of
Nil — s

Cons x xs — sum Xs (s + x)

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s = Ip
case read Ip of
Nil — s

Cons x xs — sum Xs (s + x)

Non-strict function: body
starts evaluating /Ip before s is
available

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s = Ip
case read Ip of
Nil —s . .

Cons x xs — sum Xs (s + x)

Read: pointer — data
Write: data — pointer

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sum lp s = Ip
case read Ip of
Nil —s . .

Cons x xs — sum Xs (s + x)

Read: pointer — data
Write: data — pointer

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sumlps= Ip s
case read Ip of l
Nil — s .

Cons x xs — sum Xs (s + x)

Pattern matching with a

decomposition mux
/W\—»/ Nil Cons \

erl

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sumlps= Ip s
case read Ip of l
Nil —'s .

Cons X xs — sum xs (s + x)

Pattern matching with a

decomposition mux
/W\—G*/ Nil Cons \

XLXSé

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sumlp s = |
case read Ip of

p
Nil — s lﬁ

s
\/
Cons x xs — sum xs (s + x)
Tail recursion: physical loop read

/ Nil Cons V—Q+ Nil Cons

XLXSL

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

Ip

sumlps=
case read Ip of l
—

s
Nil — S -
Cons x xs — sum Xs (s + x)
Non-strictness enables read
pipeline parallelism: second

list element is read before / Nil Cons \- 1@~/ Nil Cons \

first processed XLXS L

Functional to Dataflow

[Townsend et al., CC 2017]

Sum a list using an accumulator and tail-recursion

sumlps=
case read Ip of
Nil — s

Cons x xs — sum Xs (s + x)

Buffer sizes affect pipeline
depth

I ﬁ

read
/ Nil Cons V

JT

—@>/ Nil Cons

XLXS L

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sumlps= Ip s
case read Ip of l +
Nil — s !

_/
Cons x xs — sum xs (s + x)
s arrives: can start computing read
sum

/ Nil Cons V—O+/ Nil Cons \

X#XS L

¢
'

Functional to Dataflow

[Townsend et al., CC 2017]

Sum a list using an accumulator and tail-recursion

sumlps=
case read Ip of
Nil — s

Cons x xs — sum xs (s + x)

I ﬁ

read
/ Nil Cons V

|

=

%+/ Nil Cons \

X#XS L

¢
'

Functional to Dataflow

[Townsend et al., CC 2017]

Sum a list using an accumulator and tail-recursion

sumlps=
case read Ip of
Nil — s

Cons x xs — sum xs (s + x)

I ﬁ

read
/ Nil Cons V

|

s

H/ Nil Cons \

X#XS L

¢
'

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sumlps= Ip s
case read Ip of
Nil — s h h

\/
Cons x xs — sum xs (s + x)

/ Nil Cons VH/ Nil Cons \
X XSL \
'

|

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sumlps= Ip s
case read Ip of l l
Nil — s ! !

\/
Cons x xs — sum xs (s + x)

/ Nil Cons VH/ Nil Cons \
X XSL \
'

|

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sumlps= Ip s
case read Ip of l l
Nil —'s ! !

\/
Cons x xs — sum Xs (s + x)

/ Nil Cons V—O+/ Nil Cons \
X XSL \
'

|

Functional to Dataflow

[Townsend et al., CC 2017]
Sum a list using an accumulator and tail-recursion

sumlps= Ip s
case read Ip of l l
Nil —'s ! !

\/
Cons x xs — sum Xs (s + x)

/ Nil Cons VH/ Nil Cons \
X XSL \
'

{cl

Dataflow to Hardware

Patience Through Handshaking

Want patient blocks to handle delays from

Full buffers

Shared resources

Busy computational
units

Memory systems
Data-dependent
computations

Patience Through Handshaking

Want patient blocks to handle delays from

Full buffers
Shared resources
Busy computational

Memory systems
Data-dependent
computations

units
— data o - .
C |—- S valid ready Meaning
© .
g valid 2 1 1 Token transferred
g ready |3 1 0 Token valid; held
| Ex 0 - No token to transfer

Latency-insensitive Design (Carloni et al.)
Elastic Circuits (Cortadella et al.)
FIFOs with backpressure

Combinational Function Block

Strict/Unit Rate:
All input tokens required to produce an output

in0

in1]out

Datapath

Combinational function ignores flow control

Combinational Function Block

Strict/Unit Rate:
All input tokens required to produce an output

in0 |/

in1]out

Valid network

Output valid if both inputs are valid

Combinational Function Block

Strict/Unit Rate:
All input tokens required to produce an output

in0 l_ _ZI'
1L

in1 out
_4—1'_014

Ready network

Input tokens consumed if output token is consumed
(output is valid and ready)

Multiplexer Block

in0in1in2
select %ﬁ
|
out
in0 E j’
fCLi F/
in1 ;{:L. |T
in2 ; -
|decoder|
select E _D_.‘T out
< —.

Demultiplexer Block

in
select =/ \
| | |

out0 out1 out2
in {'— CI__T: out0
*G‘—T: out1

[out2

D decoder] :

—

select {
H’—G:

Buffering a Linear Pipeline

| | |-] [
_— _— _— > _— —>|
<] < < =

Combinational block

1)
1)

Buffering a Linear Pipeline

11111 10101 [] I'N
Long Combinational Path (Data + Valid)

{1

A

Buffering a Linear Pipeline

1)
1]
1]

1]
1]

1)
1)

Data buffer:
Pipeline register
with valid, enable

Buffering a Linear Pipeline

Lol

(] 1 =

Buffering a Linear Pipeline

1)

= [T _

1]
1]

1]
1]

- LEO =)=

1)
1)

—I

Control Buffer:
Register diverts token when
downstream suddenly stops
Cao et al. MEMOCODE 2015
Inspired by Carloni’s Latency Insensitive Design (e.g., MEMOCODE 2007)

The Problem with Fork

Combinational Block:
inputs ready when
both valid &

T output ready

The Problem with Fork

Combinational Block:
inputs ready when
both valid &

Wt output ready

The Problem with Fork

Fork:
outputs valid only
when all are ready

The Problem with Fork

Fork:
outputs valid only

when all are ready

The Problem with Fork

Fork:
outputs valid only

when all are ready

Oops: Combinational Cycle
This is not compositional

The Solution to Combinational Loops

1]
1]
1]
1)

— valid

ready «—— < | . < Da—

The Solution to Combinational Loops

- 2 | i

ready-<Ss———=—————— ==

The Solution to Combinational Loops

Allowed: Combinational
paths from valid to ready

ready <= = e e

The Solution to Combinational Loops

Allowed: Combinational
paths from valid to ready

Prohibited: Combinational
paths from ready to valid

The Solution to Fork: A Little State

Valid out ignores ready
of other outputs

c»—Di

11

out0

out1

B out2

The Solution to Fork: A Little State

Flip-flop set after token
sent suppresses duplicates

Valid out ignores ready
of other outputs

e

e

S

e

g

out0

out1

out2

The Solution to Fork: A Little State

Flip-flop set after token Valid out ignores ready
sent suppresses duplicates of other outputs

— o 0
in iiz—iﬂ

Input consumed once one
token sent on every output

out0

0 o))

out1

g

Nondeterministic Merge

Share with
merge/demux

109|9s

Two-Way Nondeterministic Merge Block w/ Select

ino{ — DAll—= jgg} out

|
J
%

1911y

“Two-way fork with multiplexed output
selected by an arbiter”

» Moore’s Law is alive and well

» But we hit a power wall in 2005.

Massive parallelism now
mandatory

» Communication is the culprit

10,000,000 Transistors (000)

1,000,000
100,000
10,000

Clock Speed (MHz)
1000

64b Imm
Channel
25p) /word

10mm 250pJ, 4 cycles

64b Off-Chip
Channel
1n)/word

» Dark Silicon is the future: faster
transistors; most must remain off

» Our project: A Pure Functional
Language to FPGAs

Add Explicit Memory Operations

read : CRef — Cont
write :: Cont — CRef
data Cont = KO| K1 Int CRef | K2 Int CRef
data Call ibk Int CRef | KK Cont Int
fibk z —casez

(Fibk 1 k) — fibk (KK (read k) 1)

(Fibk. 2 k) — fibk (KK (read k) 1)
(Fibk n k) — fibk (Fibk (n-1) (write (K1 n k)))

(KK (K1 n k) n1) — fibk (Fibk (n-2) (write (K2 n1 k)))
(KK (K2 n1 k) n2) — hbk (KK (read k) (n1 + n2)

> Removing recursion P L T ——

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

mlps=

» Functional to dataflow s oot

COHS X5 — sum xs (s +x)

Input and Output Buffers

Input Input Buf. Core Output Buf. Output
» Dataflow to hardware
ready ready ready

Combinational paths broken:
Input buffer breaks ready path

Output buffer breaks datafvalid path

	Recursion
	Functional IR to Dataflow
	Dataflow to Hardware

