Haskell-to-Hardware: The FHW Project

Stephen A. Edwards
Columbia University

Octopi Workshop
Chalmers University of Technology
Gothenburg, Sweden
December 2018

Motivation: Specialized Accelerators and Dark Silicon
Related Work

FHW: Functional Programs to Hardware

Algebraic Data Types in Hardware

Implementing Recursion in Hardware

Functional IR to Dataflow

Dataflow to Hardware

Synthesizing Parallel Memory Systems

Conclusions

ceYNovemberal

Moore's Law

16

151 ,/’
= 14r //
ﬂg 131 s]
S :ZI r S “The complexity for
[7 «
w22 10} / minimum component
[L 7 H
w32 3l 7 costs has increased at a
=
s T s rate of roughly a factor
O 6
Sew 5| of two per year.”
== 4r
Sa 3
=y ef Closer to every 24
o months

Gordon Moore, Cramming More Components onto Integrated Circuits,
Electronics, 38(8) April 19, 1965.

Intel CPU Trends

10,000,000
' ' Transistors (000)

Dual-Core Itanium 2 =

1,000,000 Moore's Law

100,000

10,000

1,000

100

10

1970 19751980 1985 1990 1995 2000 2005 2010

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

Intel CPU Trends

10,000,000

' ' Transistors (000)

1.000.000 Dual-Core Itanium 2 = Moore's Law
100,000
10,000
1,000
100
10 Performance

- (instructions/clock)

1

Microarchitectural
improvements

1970 19751980 1985 1990 1995 2000 2005 2010

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

Pollack’s Rule: Diminishing Returns for Processors

10 ¢
3 Performance ~ Sart(Area) Single-threaded processor
s performance grows with the
5 square root of area.
o *
L Slope =~0.5
£ ¢ It takes
1 * 4x the transistors to give
1.00

10.00 2x the performance.
Area (X)

Fred J. Pollack, MICRO 1999 keynote. Graph from Borkar, DAC 2007.

Intel CPU Trends

10,000,000
' ' Transistors (000)
1.000.000 Dual-Core Itanium 2 = Moore's Law
100,000
10,000
Clock Speed (MHz)
1,000
100
10 Performance
(instructions/clock)
1

Microarchitectural
improvements

1970 19751980 1985 1990 1995 2000 2005 2010

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

Intel Processors to Scale

P - = —1 | G
4004 '386 '486 Pentium Pl Pl PIV Core?2
1971 1987 1989 1993 1997 1999 2000 2006

What Happened in 2005?

Pentium 4 Core 2 Duo Xeon E5

2000 2006 2012
1 core 2 cores 8 cores

Transistors: 42 M 291 M 2.3G

Intel CPU Trends

10,000,000
' ' Transistors (000)
1.000.000 Dual-Core Itanium 2 = Moore's Law
100,000
Pentium
10,000
Clock Speed (MHz)
1,000
100 Power (W)
Limits of air cooling
10 Performance
(instructions/clock)
1

Microarchitectural
improvements

1970 19751980 1985 1990 1995 2000 2005 2010

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

Heat Flux in IBM Mainframes: A Familiar Trend

Module Heat Flux Trend (watts/em2)

End of Bipolar
Water Cooling

14 13
IBM ES9000 \.
12
Pentium 4 Xeon D L
10
Bluafire
Itanium 2! ..
g8 Fujitsu VP2000 GR
IBM 20805 IBM GP
” wr T BMRs o o
Fujitsu M-780 | IEM RY7 g @ ontium 4
Pulsar
4 1BM 2090 MG o
CDC Cyber 205
Start of Water IBI’:!B&O;‘;'S% IBM RY4 o
2 Cooling Apache
IEM 370 IijauggBM'a [] /" g Morced
Vacuum ® § @y fontium i (OSIF)
Q . T T T T
1950 1960 1970 1980 1990 2000 2010

Year of Announcement

Schmidt. Liquid Cooling is Back. Electronics Cooling. August 2005.

Liquid Cooled Apple Power Mac G5

2004 CMOS 1.2 kW

Dally: Calculation Cheap; Communication Costly

64b FPU
0.1mn?
50p) /op
1.5GHz

64b Imm
Channel
25p) /word

10mm 250pJ, 4 cycles

64b Off-Chip
Channel
1nJ/word

“Chips are power
limited and most power
is spent moving data

Performance =
Parallelism

Efficiency = Locality

Bill Dally's 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance; Locality for Efficiency

Dally: “Single-thread processors are
in denial about these two facts”

We need

different programming paradigms
and

different architectures

on which to run them.

The NVIDIA Titan V/Volta GV100-400 (Dec 2017)

Speed 110 TFLOP/s
Frequency 1200 MHz
Power 250 W
Process 12 nm
Transistors 21.1 G
Area 815 mm?
CUDA Cores 5120
Memory
Size 12 GB
Bus width 3072 bits
Clock 850 MHz
Bandwidth 652.8 Gb/s
Price

$3000

The Future is Wires and Memory

o L « 38 . b
DarkiSilicon™™ ae wee . g
@ V2 e .0 BE Be
*~ g -
oY aad o -
PR san Pe o & %
s BR°
q
=® B PR
']
8.
s We L]
B cs
e DA &a
i 'y
I "E ‘
f’.:’ 8 m@8 _E 8s
’ i * up
] ’ * 30 Bes "R B

=]
0 -
rd &"e &
8 .32
"1 »
1]
[1]
Ed
aE
g 459 A2
£}
-

Related Work

Xilinx's Vivado (Was xPilot, AutoESL)

& SSDM (System-level Synthesis Data Model)

= Hierarchical netlist of concurrent processes and communication
channels

= Each leaf process contains a sequential program which is represented
by an extended LLVM IR with hardware-specific semantics
* Port /10 interfaces, bit-vector manipulations, cycle-level notations

SystemC input; classical high-level synthesis for processes
Jason Cong et al. ISARS 2005

Taylor and Swanson’s Conservation Cores

- C-core
\ Generation

Code to Stylized Verilog and

Inter-BB through a CAD flow.
State Machine v
Synopsys
IC Compiler,
vV

0.01 mm? in 45 nm TSMC
runs at 1.4 GHz

Custom datapaths, controllers for loop kernels; uses existing

memory hierarchy
Swanson, Taylor, et al. Conservation Cores. ASPLOS 2010.

Bacon et al.’s Liquid Metal

plain text | ; ; ;
1 public static Unsigned6é4 DEScoder (KeySchedule keys,

(64 bits) Unsigned64 text)
v Y
IP Unsigned64 block = text.permute (IP.Permutation);
L
Unsigned32 R = block.extractBits (sixtyfour.b0 ,
& R ;
H sixtyfour.b3l);
>< 1 Unsigned32 L = block.extractBits (sixtyfour.b32,
sixtyfour.b63);

for (sixteen round) {

Unsigned32 F = Fiestel (keys, round, R);

Unsigned32 X = F ~ L;

L = R;
R = X;

13 more rounds }

i l Unsigned64 LR = makeUnsigned64 (R, L);

return LR.permute (FP.Permutation);

v L
cipher text
(64 bits)

Fig. 2. Block level diagram of DES and Lime code snippet
JITting Lime (Java-like, side-effect-free, streaming) to FPGAs
Huang, Hormati, Bacon, and Rabbah, Liquid Metal, ECOOP 2008.

Goldstein et al.’s Phoenix

int squares()

int i =
sum

for (;i<10;i++)
sum += i*i;
return sum;

3

Figure 3: C program and its representation comprising three hy-
perblocks; each hyperblock is shown as a numbered rectangle. The
dotted lines represent predicate values. (This figure omits the token
edges used for memory synchronization.)

Synthesized by CAB

pipeline
stages

Py
a3
8s
5§

2
ﬂ
9

183
158
ache

Memory

use

memory access network

Figure 8: Memory access network and implementation of the value
and token forwarding network. The LOAD produces a data value
consumed by the oval node. The STORE node may depend on the
load (i.e., we have a token edge between the LOAD and the STORE,
shown as a dashed line). The token travels to the root of the tree,
which is a load-store queue (LSQ).

C to asynchronous logic, monolithic memory
Budiu, Venkataramani, Chelcea and Goldstein, Spatial Computation, ASPLOS 2004.

Ghica et al.’s Geometry of Synthesis

com

* DELTA
com

exp

exp

a5 DER

init
more

curr |

f ‘
D
next | <+
) B
Figure 1. In-place map schematic and implementation

Algol-like imperative language to handshake circuits
Ghica, Smith, and Singh. Geometry of Synthesis IV, ICFP 2011

Greaves and Singh’s Kiwi

public static void SendDevicelD()
{ int devicelD = 0x76;
for (inti=7,i>0;i—)
{ scl = false;
sda_out = (devicelD & 64) = 0;
Kiwi.Pause(); // Set it i—th bit of the device ID
scl = true; Kiwi.Pause(); // Pulse SCL
scl = false; devicelD = devicelD << 1;
Kiwi.Pause();

}
}

C# with a concurrency library to FPGAs
Greaves and Singh. Kiwi, FCCM 2008

Arvind, Hoe, et al.’s Bluespec

GCD Mod Rule

Gcd(a, b) if (a>b)A(b#£ 0) — Ged(a—b, b)
GCD Flip Rule

Gcd(a, b) ifa<b — Ged(b, a)

T
T Flip+™ Mod
lod

Figure 1.3 Circuit for computing Ged(a, b) from Example 1.

Guarded commands and functions to synchronous logic
Hoe and Arvind, Term Rewriting, VLS| 1999

Sheeran et al.’s Lava

X Xty
bfly :: CmplxArithmetic m
=> [CmplxSig]l -> m [CmplxSig]
bfly [i1, i2] =
do ol <- csubtract (il, i2) y X-y
02 <- cplus (i1, i2) -1
return [ol, 02] Figure 9: A butterfly

bflys :: CmplxArithmetic m
=> Int -> [CmplxSig]l -> m [CmplxSig]
bflys n =
riffle >-> raised n two bfly >-> unriffle
Figure 10: A butterfly stage of size 8 expressed with riffling

Functional specifications of regular structures
Bjesse, Claessen, Sheeran, and Singh. Lava, ICFP 1998

Kuper et al.’s CAaSH

fir (State (ws, hs)) © =
(State (shiftInto x s, hs), (z > zs) ® hs)

More operational Haskell specifications of regular structures
Baaij, Kooijman, Kuper, Boeijink, and Gerards. CAash, DSD 2010

FHW: Functional Programs
to Hardware

Deterministic Concurrency: A Fool’s Errand?

What Models of Computation Provide Determinstic Concurrency?

W

Synchrony The Columbia Esterel Compiler
2001-2006

SHIM

Kahn Networks The SHIM Model/Language
2006-2010

The Lambda Calculus This Project
2010-

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

—

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

v

Why Functional?

» Referential transparency simplifies
formal reasoning about programs

» Inherently concurrent and
deterministic
(Thank Church and Rosser)

» Immutable data makes it vastly
easier to reason about memory in
the presence of concurrency

Why FPGASs?

» We do not know the structure of
future memory systems
Homogeneous/Heterogeneous?
Levels of Hierarchy?
Communication Mechanisms?

» We do not know the architecture
of future multi-cores
Programmable in Assembly/C?
Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but
representative of the long-term solution.

A High-End FPGA: Intel/Altera Stratix 10

6847 dual-ported 2.5KB memory blocks; 16 MB total
3960 36-bit 500 MHz DSP blocks (MAC-oriented datapaths)
2M 6-input LUTs; 14 nm feature size

Quad ARM Cortex A53-Based Hard Processor System
| ARMCortex-AS3 | ARM Cortex-A53
NEON || FPU | NEON | FPU
ESlEEEE e

Package Substrate ARMCortex-AS3 ARM Cortex-A53

NEON FPU NEON | FPU
[32KB1Coche | [32KBDCache | 32K01Cocne 321B0Cacke [RTTTLAS
Wby | WRECC | wPay wehECE

1MBL2 Cache

PCle Gen3 Hard IP
Transceiver Tile
(24 Channels)

System MMU Cache Coherency Uit

(24 Channels)

Hi y =
AXI32 axl AXIIACE
32/64/128 32/64/128

PCle Gen3 Hard IP
Transceiver Tile

HyperFlex Core Logic Fabric

9
8
£
2
3
F
£
5
4
2
]
3
=
2
=)
B
5
S
%
5
x
B
]
2

Hard Memory Controllers, /0 PLLS

PCle Gen3 Hard IP

To Implement Real Algorithms, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy

Algebraic Data Types in
Hardware

Bit vectors with tag bits
Recursive types use pointers

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

type ::= Type Primitive type
| Constr Type* | --- | Constr Type* Tagged union

Subsume C structs, unions, and enums
Comparable power to C++ objects with virtual methods

“Algebraic” because they are sum-of-product types.

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:
type ::= Type Primitive type
| Constr Type* | --- | Constr Type* Tagged union

Examples:

data Intlist = Nil —— Linked list of integers
| Cons Int Intlist

data Bintree = Leaf Int —— Binary tree of integers
| Branch Bintree Bintree

data Expr = Literal Int
| Var String
| Binop Expr Op Expr

—— Arithmetic expression

data Op = Add | Sub | Mult | Div

Algebraic Datatypes in Hardware: Lists

data IntList = Cons Int IntList
| Nil

48 3332 10
| pointer \ int 1 Cons

e — gl

Datatypes in Hardware: Binary Trees

data IntTree = Branch IntTree IntTree
| Leaf Int

32 1716 10
[pointer \ pointer 0| Branch

| int 1 Leaf

Example: Huffman Decoder in Haskell

data HTree = Branch HTree HTree
| Leaf Char

decode :: HTree — [Bool] — [Char]

decode table str = bit str table

where
bit (False:xs) (Branch |) = bit xs | —— 0: left
bit (True:xs) (Branch _r) = bit xs r —— 1:right
bit x (Leaf) =c : bit x table —— /eaf
bit [] _ =[] —— done

Three data types:

Input bitstream [Bool] (list of Booleans)
Output character stream [Char] (list of Characters)
Huffman tree HTree

Encoding the Types

Huffman tree nodes: (19 bits)

[T 8bitchar 1] Leaf

[9-bit pointer | 9-bit pointer 0] Branch

Boolean input stream: (14 bits)

[12-bit pointer B/1] Cons

[

Character output stream: (19 bits)

[10-bit pointer | 8-bitchar _[1] Cons

e il

Implementing Recursion
in Hardware

Transform to continuation-passing style
Algebraic type for continuations/activation records
Tail-recursion only

Kuangya Zhai, Richard Townsend, Lianne Lairmore, Martha A.
Kim, and Stephen A. Edwards. Hardware Synthesis from a
Recursive Functional Language. In Proceedings of the
International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), pages 83-93, Amsterdam, The
Netherlands, October 2015.

What Do We Do With Recursion?

Compile it into tail recursion with explicit stacks

Definitional Interpreters for Higher-Order Programming Languages

John C. Reynolds, Syracuse University

[Proceedings of the ACM Annual Conference, 1972]

Really clever idea:

Sophisticated language ideas such as recursion and
higher-order functions can be implemented using simpler
mechanisms (e.g., tail recursion) by rewriting.

Removing Recursion: The Fib Example

fib n = case n of
1 — 1
2 -1
n — fib (n—-1) + fib (n-2)

Transform to Continuation-Passing Style

fibk n k = case n of
1 — k1
2 — k1

n — fibk (n—-1) (An1 —

fibk (n-2) (An2 —
k (n1 + n2)))

fib n fibk n (Ax — x)

Name Lambda Expressions (Lambda Lifting)

fiok n k =case n of
1 — k1
2 — k1

n — fibk (n-1) (k1 n k)

k1 n knl= fibk (n—2) (k2 n1 k)
k2 n1kn2= k (n1 +n2)

kO X = X

fib n = fibk n kO

Represent Continuations with a Type

data Cont = KO | K1 Int Cont | K2 Int Cont

fibk n k = case (n,k) of

(1, k) - kkk1

(2, k) - kkk1

(n, k) — fibk (n=1) (K1 n k)
kk k a = case (k, a) of

((K1n k), n1) — fibk (n-2) (K2 n1 k)
(K2 n1 k), n2) — kk k (n1 + n2)
(KO, X) — X

fib n = fibk n KO

Merge Functions

data Cont = KO | K1 Int Cont | K2 Int Cont
data Call = Fibk Int Cont| KK Cont Int

fibk z = case z of
(Fibk 1 k) — fibk (KKk 1)
(Fibk 2 k) — fibk (KK k 1)
(Fibk n k) — fibk (Fibk (n—1) (K1 n k))

(KK (K1 n k) n1) — fibk (Fibk (n—-2) (K2 n1 k))
(KK (K2 n1 k) n2) — fibk (KK k (n1 + n2))
(KK KO X) — X

fib n = fibk (Fibk n KO)

Add Explicit Memory Operations

read :: CRef — Cont

write :: Cont — CRef

data Cont = KO | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

fibk z = case z of
(Fibk 1 k) — fibk (KK (read k) 1)
(Fibk 2 k) — fibk (KK (read k) 1)
(Fibk n k) — fibk (Fibk (n—1) (write (K1 n k)))

(KK (K1 n k) n1) — fibk (Fibk (n—2) (write (K2 n1 k)))
(KK (K2 n1 k) n2) — fibk (KK (read k) (n1 + n2))
(KK KO X) — X

fib n = fibk (Fibk n (write K0))1

Functional IR to Dataflow

Function calls receive arguments and route results back
Non-strict functions + tail calls enable pipeline parallelism

Richard Townsend, Martha A. Kim, and Stephen A. Edwards.
From Functional Programs to Pipelined Dataflow Circuits. In
Proceedings of Compiler Construction (CC), pages 76-86, Austin,
Texas, February 2017.

Dataflow Node Library

Vi y
|;| primitive ﬁ fork
' ¢

case H@demux
sl
m @ operations

“and” firing rules

b
4% mux %merge #mergechoice [lock [

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlp s = Ip s
case read Ip of é l
Nil —'s

Cons X xs — sum xs (s + x)

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlp s = Ip s
case read Ip of l l
Nil —'s

Cons X xs — sum xs (s + x) %

Non-strict function: body
starts evaluating /p before s is
available

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlps= Ip
case read lp of l
Nil —'s

Cons X xs — sum xs (s + x)

Read: pointer — data

Write: data — pointer

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlps= Ip
case read lp of l
Nil —'s

Cons X xs — sum xs (s + x)

Read: pointer — data

Write: data — pointer

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlp s = Ip s
case read Ip of
Nil —'s

Cons X xs — sum xs (s + x)

Pattern matching with a read
decomposition mux
/W\—d Nil Cons \

erl

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlips= Ip s
case read Ip of l
Nil — s
Cons X xs — sum xs (s + x)
Pattern matching with a
decomposition mux

/m\—&d Nil Cons \

XLXS é

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlp s = Ip s
case read Ip of
Nil —'s

l—
4._.
Cons x xs — sum xs (s + x)
Tail recursion: physical loop

N|I Cons Nil Cons

XLXS L

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlp s = Ip s
case read Ip of l
Nil —'s ! -

Cons x xs — sum xs (s + x)

Non-strictness enables

pipeline parallelism: second

list element is read before / Nil Cons \V Nil Cons

first processed XLXS L

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlp s = Ip s
case read Ip of
Nil —'s

)
..
Cons X xs — sum xs (s + x)
Buffer sizes affect pipeline

depth
N|I Cons Nil Cons

XLXS L

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlps=
case read Ip of
Nil —'s

Cons X xs — sum xs (s + x)

s arrives: can start computing
sum

e
?—r

read
/ Nil Cons V

4+/ Nil Cons \

X#Xs L

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlp s = Ip s
case read Ip of l
Nil —'s

Cons X xs — sum xs (s + x)

read

Nil Cons —0+/ Nil Cons \

X#Xs L

] 'ﬁ

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlp s = Ip s
case read Ip of l
Nil —'s

Cons X xs — sum xs (s + x)

read

Nil Cons H/ Nil Cons \

X#Xs L

] 'ﬁ

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlps= Ip
case read Ip of l
Nil —'s !

Cons X xs — sum xs (s + x)

read
/ Nil Cons V

S

%\Tﬁ

—>/ Nil Cons

X XSL

!

|

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlps= Ip
case read Ip of l
Nil —'s !

Cons X xs — sum xs (s + x)

read
/ Nil Cons V

S

%1??

—>/ Nil Cons

X XSL

!

|

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlps= Ip
case read Ip of
Nil —'s

T
Cons X xs — sum xs (s + x)

N|I Cons

Nil Cons

X XSL

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sumlp s = Ip s
case read Ip of l
Nil —'s !

read
/ Nil Cons VH Nil Cons

xst
'
"

l—
Cons x xs — sum Xs (s + x) T

Non-Strict Functions Run Faster

Speedup
w

Strict, Finite Buffers

MergeSort TreeMap Filter Append Map

Non-Strict Functions Run Faster

Speedup
w

B)T oo
| |

MergeSort ~ TreeMap DFS Filter Append Map

Non-Strict Functions Run Faster

Speedup
w

N

MergeSort ~ TreeMap DFS Filter Append Map

Dataflow to Hardware

Valid-ready handshake protocol
Data and control buffers break combinational cycles
Compositionality from prohibiting paths from ready to valid
Fork outputs are non-strict
Nondterministic merge with choice output

Stephen A. Edwards, Richard Townsend, and Martha A. Kim.
Compositional Dataflow Circuits. In Proceedings of the
International Conference on Formal Methods and Models for
Codesign (MEMOCODE), pages 175-184, Vienna, Austria,
September 2017.

Patience Through Handshaking

Want patient blocks to handle delays from

Full buffers

Shared resources

Busy computational
units

Memory systems
Data-dependent
computations

Patience Through Handshaking

Want patient blocks to handle delays from

Full buffers
Shared resources
Busy computational

Memory systems
Data-dependent
computations

units
— data o - .
C |—- S valid ready Meaning
© .
g valid 2 1 1 Token transferred
g ready |3 1 0 Token valid; held
| Ex 0 - No token to transfer

Latency-insensitive Design (Carloni et al.)
Elastic Circuits (Cortadella et al.)
FIFOs with backpressure

Combinational Function Block

Strict/Unit Rate:
All input tokens required to produce an output

in0

in1]out

Datapath

Combinational function ignores flow control

Combinational Function Block

Strict/Unit Rate:
All input tokens required to produce an output

in0 |/

in1]out

Valid network

Output valid if both inputs are valid

Combinational Function Block

Strict/Unit Rate:
All input tokens required to produce an output

in0 l_ _ZI'
1L

in1 out
_4—1'_014

Ready network

Input tokens consumed if output token is consumed
(output is valid and ready)

Multiplexer Block

in0in1in2
select %ﬁ
|
out
in0 E j’
fCLi F/
in1 ;{:L. |T
in2 ; -
|decoder|
select E _D_.‘T out
< —.

Demultiplexer Block

in
select =/ \
| | |

out0 out1 out2
in {'— CI__T: out0
*G‘—T: out1

[out2

D decoder] :

—

select {
H’—G:

Buffering a Linear Pipeline

| | |-] [
_— _— _— > _— —>|
<] < < =

Combinational block

1)
1)

Buffering a Linear Pipeline

11111 10101 [] I'N
Long Combinational Path (Data + Valid)

{1

A

Buffering a Linear Pipeline

1)
1]
1]

1]
1]

1)
1)

Data buffer:
Pipeline register
with valid, enable

Buffering a Linear Pipeline

Lol

(] 1 =

Buffering a Linear Pipeline

1)

= [T _

1]
1]

1]
1]

- LEO =)=

1)
1)

—I

Control Buffer:
Register diverts token when
downstream suddenly stops
Cao et al. MEMOCODE 2015
Inspired by Carloni’s Latency Insensitive Design (e.g., MEMOCODE 2007)

The Problem with Fork

Combinational Block:
inputs ready when
both valid &

T output ready

The Problem with Fork

Combinational Block:
inputs ready when
both valid &

Wt output ready

The Problem with Fork

Fork:
outputs valid only
when all are ready

The Problem with Fork

Fork:
outputs valid only

when all are ready

The Problem with Fork

Fork:
outputs valid only

when all are ready

Oops: Combinational Cycle
This is not compositional

The Solution to Combinational Loops

1]
1]
1]
1)

— valid

ready «—— < | . < Da—

The Solution to Combinational Loops

- 2 | i

ready-<Ss———=—————— ==

The Solution to Combinational Loops

Allowed: Combinational
paths from valid to ready

ready <= = e e

The Solution to Combinational Loops

Allowed: Combinational
paths from valid to ready

Prohibited: Combinational
paths from ready to valid

The Solution to Fork: A Little State

Valid out ignores ready
of other outputs

c»—Di

11

out0

out1

B out2

The Solution to Fork: A Little State

Flip-flop set after token
sent suppresses duplicates

Valid out ignores ready
of other outputs

e

e

S

e

g

out0

out1

out2

The Solution to Fork: A Little State

Flip-flop set after token Valid out ignores ready
sent suppresses duplicates of other outputs

— o 0
in iiz—iﬂ

Input consumed once one
token sent on every output

out0

0 o))

out1

g

Nondeterministic Merge

Share with
merge/demux

109|9s

Two-Way Nondeterministic Merge Block w/ Select

ino{ — DAll—= jgg} out

|
J
%

1911y

“Two-way fork with multiplexed output
selected by an arbiter”

gcd(a, b) =
ifa=>b
a
elseif a<b fork
gcd(a,b—a)
else
gcd(a—b,b) demux

mux

gcd(a, b) <

a

initial
token

Best Buffering for GCD (Manually Obtained)

Each loop has one of each buffer

-

T |
[]
I il
L Q = Data Buffer
- -
~ m Control Buffer
1 T
| . L

Synthesizing Parallel
Memory Systems

Duplicate the recursive task
Assign separate cache partitions to parallel tasks
Works best with balanced workload

Richard Townsend, Martha A. Kim, and Stephen A. Edwards.
Synthesizing Parallel Hardware Implementations of
Divide-and-Conquer Algorithms. Submitted to Proceedings of the
Design Automation Conference (DAC), 2019

Divide-and-Conquer Functions: Inherently Parallel

map :: Tree — Tree
map t = case t of
Leaf -t
Node | x r — Node (map I) (f x) (mapr)

map H Shared Cache

Transformations to Enable Parallelism

mapt= ...

map H Shared Cache

Transformations to Enable Parallelism

mapt=..
mapc :: Tree — Tree
mapc t = case t of
Leaf -t
Node | x r — Node (mapc¢ I) (fc x) (mapc¢r)

map H Shared Cache [Mapc

f

Transformations to Enable Parallelism

mapt= ..

mapc :: Tree — Tree

mapc t= ...

maps t = case t of
Leaf -t

Node I x r — Node (map I) (f x) (mapc¢r)

map H Shared Cache

mapc

fc

Memory Partitioning to Exploit the Parallelism

mapt= ...
mapc :: Treec — Treec
mapc tp = ...
maps tp = case t of
Leaf -t
Node | x r — Node (map) (f x) (TfromC (map¢ (TtoC r)))

’—| TtoC | Heapc

Heap |mapc|

o 1
Y
TfromC Stackc

Stack

Doing This Increases Performance

2 ,,,
[==1
8 —
c $ =
TS
SIS T T S A
e :
T .c
(O]
Q3
(1]
Lo
N e
x>~ Transformed+Partitioned
0.5 b

Treesort RBsort RBmap Filtering Mergesort

Conclusions

Moore's Law is alive and well

But we hit a power wall in 2005. Massive
parallelism is now mandatory

Communication is the cuplprit

64b Off-Chip
Channel
1n)/word

Dark Silicon with special-purpose
accelerators is the future

Our Project: Haskell-to-Hardware

Encoding the Types

Huffman tree nodes: (19 bits)

[8-bit char 1]

[Sbit pointer | -5 pornter o]

Boolean input stream: (14 bits)

[_T2bitponter _Te[1] Cons
——

Character output stream: (19 bits)

10-bit pointer [8-bit char__1]

Represent Continuations with a Type

data Cont = KO | K1 Int Cont | K2 Int Cont

fibk

kkka

fib n

nk

= case (n,k) of

k-
@K -
(n, k)

kkk|

fbk(1) (K1n k)

= case (k, a) of

K1n k), n1)

fibk (n- pRlel n1k)
n2)

A(Kz 110, n2) kkk(

(Ko,

" Hbknko

Leaf
Branch

Cons.
Nil

Implement algebraic data types as bit
vectors with tags and pointers

Implement recursive functions with tail
recursion and explicit types for activation
records/continuations

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

sum lps=

case read Ip of
Nil =

Cons x xs — sum xs (s +x)

Buffering a Linear Pipeline

i

Cao et al. MEMOCODE 2015

Memory Partitioning to Exploit the Parallelism

Implement the functional IR with a
dataflow network. Non-strict
tail-recursive functions express pipeline
parallelism

Implement dataflow in hardware with
compositional blocks with handshaking

Duplicate tasks and partition caches to
speed recursive algorithms

	Motivation: Specialized Accelerators and Dark Silicon
	Related Work
	FHW: Functional Programs to Hardware
	Algebraic Data Types in Hardware
	Implementing Recursion in Hardware
	Functional IR to Dataflow
	Dataflow to Hardware
	Synthesizing Parallel Memory Systems
	Conclusions

