Haskell to Hardware and Other Dreams

Stephen A. Edwards

Richard Townsend Martha A. Kim
Lianne Lairmore Kuangya Zhai

Columbia University

Synchron, Bamberg, Germany, December 7, 2016

ceYNovemberal

Moore's Law

16
15+ ,/’
= 14r //
‘,’_’g 131 s]
g2 :ZI " s “The complexity for
I~ 4 ..
‘:‘E;E 10 e minimum component
- 4 .
w32 3l e costs has increased at a
“
SsE T et rate of roughly a factor
e 6 I n”
Saw sb of two per year.
£ 4r
S 3t
=W 2t Closer to every 24
c|> months

Gordon Moore, Cramming More Components onto Integrated Circuits,
Electronics, 38(8) April 19, 1965.

Four Decades of Microprocessors Later...

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 103)

Frequency (MHz)
Typical Power
(Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

Source: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

What Happened in 2005?

Pentium 4 Core 2 Duo Xeon E5

2000 2006 2012
1 core 2 cores 8 cores

Transistors: 42 M 291 M 2.3G

Heat Flux in IBM Mainframes: A Familiar Trend

Module Heat Flux Trend (watts/cm2)

fe
+

[
1%]

[
o

1950

End of Bipolar
Water Cooling
1Y

IBM ES9000 \.

Htanium 2¥" f
Fujitsu VP2000 [
1BM 30805 Ll
vt EmAs g
Fulitsu M-780 o IBMRY7 o @ ontium 4
Pulsar

1BM 3030

CDC Cyber 205
Start of Water r:??oaasi 1BM R'N.
Coolin, 18 L) Apache
2 Fujitsu M3) ' Merced
1BM 3701BM 3033 L]

Pentium 4 Xeon DR ®

Bluefire
]

IBM RY6 ™

..let[um 11 (DSIP)
T

1960 1970 1980

1990

2000 2010

Year of Announcement

Schmidt. Liquid Cooling is Back. Electronics Cooling. August 2005.

Liquid Cooled Apple Power Mac G5

2004 CMOS 1.2 kW

Dally: Calculation Cheap; Communication Costly

64b FPU
0.1mn?
50p) /op
1.5GHz

64b Imm
Channel
25p) /word

10mm 250pJ, 4 cycles

64b Off-Chip
Channel
1nJ/word

“Chips are power
limited and most power
is spent moving data

Performance =
Parallelism

Efficiency = Locality

Bill Dally's 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance; Locality for Efficiency

Dally: “Single-thread processors are
in denial about these two facts”

We need

different programming paradigms
and

different architectures

on which to run them.

o L « 38 . b
DarkiSilicon™™ ae wee . g
@ V2 e .0 BE Be
*~ g -
oY aad o -
PR san Pe o & %
s BR°
q
=® B PR
']
8.
s We L]
B cs
e DA &a
i 'y
I "E ‘
f’.:’ 8 m@8 _E 8s
’ i * up
] ’ * 30 Bes "R B

=]
0 -
rd &"e &
8 .32
"1 »
1]
[1]
Ed
aE
g 459 A2
£}
-

Related Work

Xilinx's Vivado (Was xPilot, AutoESL)

& SSDM (System-level Synthesis Data Model)

= Hierarchical netlist of concurrent processes and communication
channels

= Each leaf process contains a sequential program which is represented
by an extended LLVM IR with hardware-specific semantics
* Port/10 interfaces, bit-vector manipulations, cycle-level notations

SystemC input; classical high-level synthesis for processes
Jason Cong et al. ISARS 2005

Taylor and Swanson’s Conservation Cores

C-core
(2 Generation

Code to Stylized Verilog and

Inter-BB through a CAD flow.
State Machine vV

Synopsys
IC Compiler,
P&R, CTS

0.01 mm? in 45 nm TSMC
runs at 1.4 GHz

Custom datapaths, controllers for loop kernels; uses existing
memory hierarchy

Swanson, Taylor, et al. Conservation Cores. ASPLOS 2010.

Bacon et al.’s Liquid Metal

plain text | ; ; ;
1 public static Unsigned6é4 DEScoder (KeySchedule keys,

(64 bits) Unsigned64 text)
v Y
IP Unsigned64 block = text.permute (IP.Permutation);
L
Unsigned32 R = block.extractBits (sixtyfour.b0 ,
& R ;
H sixtyfour.b3l);
>< 1 Unsigned32 L = block.extractBits (sixtyfour.b32,
sixtyfour.b63);

for (sixteen round) {

Unsigned32 F = Fiestel (keys, round, R);

Unsigned32 X = F ~ L;

L = R;
R = X;

13 more rounds }

i l Unsigned64 LR = makeUnsigned64 (R, L);

return LR.permute (FP.Permutation);

v L
cipher text
(64 bits)

Fig. 2. Block level diagram of DES and Lime code snippet
JITting Lime (Java-like, side-effect-free, streaming) to FPGAs
Huang, Hormati, Bacon, and Rabbah, Liquid Metal, ECOOP 2008.

Goldstein et al.’s Phoenix

int squares()

int i =
sum

for (;i<10;i++)
sum += i*i;
return sum;

3

Figure 3: C program and its representation comprising three hy-
perblocks; each hyperblock is shown as a numbered rectangle. The
dotted lines represent predicate values. (This figure omits the token
edges used for memory synchronization.)

Synthesized by CAB

pipeline
stages

Py
a3
8s
5§

2
ﬂ
9

183
158
ache

Memory

use

memory access network

Figure 8: Memory access network and implementation of the value
and token forwarding network. The LOAD produces a data value
consumed by the oval node. The STORE node may depend on the
load (i.e., we have a token edge between the LOAD and the STORE,
shown as a dashed line). The token travels to the root of the tree,
which is a load-store queue (LSQ).

C to asynchronous logic, monolithic memory
Budiu, Venkataramani, Chelcea and Goldstein, Spatial Computation, ASPLOS 2004.

Ghica et al.’s Geometry of Synthesis

com

* DELTA
com

exp

exp

a5 DER

init
more

curr |

f ‘
D
next | <+
) B
Figure 1. In-place map schematic and implementation

Algol-like imperative language to handshake circuits
Ghica, Smith, and Singh. Geometry of Synthesis IV, ICFP 2011

Greaves and Singh’s Kiwi

public static void SendDevicelD()
{ int devicelD = 0x76;
for (inti=7,i>0;i—)
{ scl = false;
sda_out = (devicelD & 64) = 0;
Kiwi.Pause(); // Set it i—th bit of the device ID
scl = true; Kiwi.Pause(); // Pulse SCL
scl = false; devicelD = devicelD << 1;
Kiwi.Pause();

}
}

C# with a concurrency library to FPGAs
Greaves and Singh. Kiwi, FCCM 2008

Arvind, Hoe, et al.’s Bluespec

GCD Mod Rule

Gcd(a, b) if (a>b)A(b#£ 0) — Ged(a—b, b)
GCD Flip Rule

Gcd(a, b) ifa<b — Ged(b, a)

T
T Flip+™ Mod
lod

Figure 1.3 Circuit for computing Ged(a, b) from Example 1.

Guarded commands and functions to synchronous logic
Hoe and Arvind, Term Rewriting, VLS| 1999

Sheeran et al.’s Lava

X Xty
bfly :: CmplxArithmetic m
=> [CmplxSig]l -> m [CmplxSig]
bfly [i1, i2] =
do ol <- csubtract (il, i2) y X-y
02 <- cplus (i1, i2) -1
return [ol, 02] Figure 9: A butterfly

bflys :: CmplxArithmetic m
=> Int -> [CmplxSig]l -> m [CmplxSig]
bflys n =
riffle >-> raised n two bfly >-> unriffle
Figure 10: A butterfly stage of size 8 expressed with riffling

Functional specifications of regular structures
Bjesse, Claessen, Sheeran, and Singh. Lava, ICFP 1998

Kuper et al.’s CAaSH

fir (State (ws, hs)) © =
(State (shiftInto x s, hs), (z > zs) ® hs)

More operational Haskell specifications of regular structures
Baaij, Kooijman, Kuper, Boeijink, and Gerards. CAash, DSD 2010

My Crusade

Deterministic Concurrency: A Fool’s Errand?

What Models of Computation Provide Determinstic Concurrency?

()

Synchrony The Columbia Esterel Compiler
2001-2006

SHIM

Kahn Networks The SHIM Model/Language
2006-2010

The Lambda Calculus This Project
2010-

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

—

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

Our Project: Functional Programs to Hardware

v

Why Functional?

» Referential transparency simplifies
formal reasoning about programs

» Inherently concurrent and
deterministic
(Thank Church and Rosser)

» Immutable data makes it vastly
easier to reason about memory in
the presence of concurrency

To Implement Real Algorithms, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy

Structured, Recursive Data
Types

Algebraic Data Types

In modern functional languages: ML, OCaml, Haskell, ...
An algebraic type is a sum of product types
Basic example: List of integers

data IntList = Nil
| Cons Int IntList

Constructing a list:
Cons 42 (Cons 17 (Cons 2 (Cons 1 Nil)))

Summing the elements of a list:

sum li = case |li of
Nil -0
Cons X XS — X + sum Xs

An Interpreter in One Slide

Abstract syntax tree data type:

data Expr =Lit Int
| Plus Expr Expr
| Minus Expr Expr
| Times Expr Expr

Recursive evaluation function:

eval e = case e of
Lit x — X
Plus e1 e2 — eval el + eval e2
Minus el e2 — eval el — eval e2
Times e1 e2 — eval el % eval e2

eval (Plus (Lit 42) (Times (Lit 2) (Lit 50)))

gives 42 +2 x 50 = 142

Algebraic Datatypes in Hardware: Lists

data IntList = Cons Int IntList
| Nil

Recursion to Handle
Recursive Data Types

What Do We Do With Recursion?
Compile it into tail recursion with explicit stacks

[Zhai et al., CODES+ISSS 2015]

Definitional Interpreters for Higher-Order Programming Languages

John C. Reynolds, Syracuse University

[Proceedings of the ACM Annual Conference, 1972]

Really clever idea:

Sophisticated language ideas such as recursion and
higher-order functions can be implemented using simpler
mechanisms (e.g., tail recursion) by rewriting.

Removing Recursion: The Fib Example

fib n = case n of
1 — 1
2 -1
n — fib (n—-1) + fib (n-2)

Transform to Continuation-Passing Style

fibk n k = case n of
1 — k1
2 — k1

n — fibk (n—-1) (An1 —

fibk (n-2) (An2 —
k (n1 + n2)))

fib n fibk n (Ax — x)

Name Lambda Expressions (Lambda Lifting)

fiok n k =case n of
1 — k1
2 — k1

n — fibk (n-1) (k1 n k)

k1 n knl= fibk (n—2) (k2 n1 k)
k2 n1kn2= k (n1 +n2)

kO X = X

fib n = fibk n kO

Represent Continuations with a Type

data Cont = KO | K1 Int Cont | K2 Int Cont

fibk n k = case (n,k) of

(1, k) - kkk1

(2, k) - kkk1

(n, k) — fibk (n=1) (K1 n k)
kk k a = case (k, a) of

((K1n k), n1) — fibk (n-2) (K2 n1 k)
(K2 n1 k), n2) — kk k (n1 + n2)
(KO, X) — X

fib n = fibk n KO

Merge Functions

data Cont = KO | K1 Int Cont | K2 Int Cont
data Call = Fibk Int Cont| KK Cont Int

fibk z = case z of
(Fibk 1 k) — fibk (KKk 1)
(Fibk 2 k) — fibk (KK k 1)
(Fibk n k) — fibk (Fibk (n—1) (K1 n k))

(KK (K1 n k) n1) — fibk (Fibk (n—-2) (K2 n1 k))
(KK (K2 n1 k) n2) — fibk (KK k (n1 + n2))
(KK KO X) — X

fib n = fibk (Fibk n KO)

Add Explicit Memory Operations

read :: CRef — Cont

write :: Cont — CRef

data Cont = KO | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

fibk z = case z of
(Fibk 1 k) — fibk (KK (read k) 1)
(Fibk 2 k) — fibk (KK (read k) 1)
(Fibk n k) — fibk (Fibk (n—1) (write (K1 n k)))

(KK (K1 n k) n1) — fibk (Fibk (n—2) (write (K2 n1 k)))
(KK (K2 n1 k) n2) — fibk (KK (read k) (n1 + n2))
(KK KO X) — X

fib n = fibk (Fibk n (write K0))1

Simplified Functional to
Dataflow

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

lp

v

sumlps=
case read Ip of
Nil —'s

Cons x xs — sum xs (s + x)

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

lp

| ;

sumlps=
case read Ip of
Nil —'s

Cons x xs — sum xs (s + x)

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

lp S
sumlps=
case read Ip of

Nil — s
Cons x xs — sum xs (s + x)

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

lp S
sumlps=
case read Ip of

Nil — s
Cons x xs — sum xs (s + x)

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

Ip

| ;

sumlps=
case read Ip of
Nil —'s

Cons X Xs — sum xs (s + x) / Nil Cons \——=/ Nil Cons \

XJXSl

Functional to Dataflow

Sum a list using an accumulator and tail-recursion

Ip

| ;

sumlps=
case read Ip of
Nil —'s

Cons x xs — sum xs (s + X) / Nil Cons \—@—/ Nil Cons \

er *

Functional to Dataflow

Sum a list using an accumulator and tail-recursion
Ip

S
sumlps=
case read Ip of

Nil —'s

Cons X Xs — sum xs (s + x) / Nil Cons \—1-@-/ Nil Cons \

er L

Functional to Dataflow

Sum a list using an accumulator and tail-recursion
Ip

S
sumlps=
case read Ip of

Nil —'s

Cons X Xs — sum xs (s + x) / Nil Cons \—1-@-/ Nil Cons \

er L

Functional to Dataflow

Sum a list using an accumulator and tail-recursion
Ip

S
sumlps=
case read Ip of

Nil —'s

Cons X Xs — sum xs (s + x) / Nil Cons \—1-@-/ Nil Cons \

er L

Functional to Dataflow

Sum a list using an accumulator and tail-recursion
lp S

sumlps=
case read Ip of
Nil —'s

Cons x Xs — sum xs (s + x) / Nil Cons \—-@-/ Nil Cons \

X#XS L

L
'

Functional to Dataflow

Sum a list using an accumulator and tail-recursion
lp S

sumlps= %
case read Ip of
Nil —'s

Cons x Xs — sum xs (s + x) / Nil Cons \—-@-/ Nil Cons \

X#XS L

L
'

Functional to Dataflow

Sum a list using an accumulator and tail-recursion
Ip

S
sumlps=
case read Ip of

Nil —'s

Cons x Xs — sum xs (s + x) / Nil Cons \=——=/ Nil Cons \

X#XS L

L
'

Functional to Dataflow

Sum a list using an accumulator and tail-recursion
lp S
l— e

sum lp s = i
read
case read Ip of
Cons x xs — sum xs (s + x) / N")SO)ZLVH Nil COns\

!

|

Functional to Dataflow

Sum a list using an accumulator and tail-recursion
lp S
l— 1

sum lp s = i
read
case read Ip of
Cons x xs — sum xs (s + x) / N")SO)ZLVH Nil COns\

!

|

Functional to Dataflow

Sum a list using an accumulator and tail-recursion
lp S
l— 1

sum lp s = i
read
case read Ip of
Cons X xs — sum xs (s + x) L NII)SO)ZL‘% Nil CO”S\

!

|

Functional to Dataflow

Sum a list using an accumulator and tail-recursion
lp S
l— 1

sum lp s = i
case read Ip of
Cons X xs — sum xs (s + x) [N")SO)ZLVH/ Nil COns\\

!

e

Non-strict functions enables pipelining

1
speedup from non-strict functions

0.8 due to pipelining
- best possible speedup
& from unbounded
2 06 “buffers..........
S
3
i
w04 -
ko)
S
O

0.2 I — I

Append Filter Map MerquortTreeMap

Dataflow to Hardware

A Latency-Insensitive Protocol

] data
c é‘ valid ready action
© .
& vl 3 0 — No token
o ready § 1 1 Token Transfer
3 S 1 0 Token held upstream

Inspired by Carloni et al.
[Cao et al., Memocode 2015]

Input and Output Buffers

Input Input Buf. Core Output Buf. Output

data

O —,

data =y B! daty e

< ready +——— ready

Combinational paths broken:
Input buffer breaks ready path
Output buffer breaks data/valid path

Larger Systems Run Just As Fast

Splitters Token Fpax Area Resources

Bits MHz ALMs % Registers
2 32 167 189 1 414
2 64 157 350 1 798
2 128 152 672 2 1573
32 128 137 10821 26 25536
64 128 140 21704 52 51168
4 64 158 700 2 1621
8 64 145 1409 3 3261
16 64 147 2826 7 6559

32 64 144 5682 14 13148
64 64 138 11404 27 26414
128 64 140 22914 55 53087

Synthesis results on an Altera Cyclone V. 166 MHz target clock rate.

» Moore’s Law is alive and well

» But we hit a power wall in 2005.

Massive parallelism now
mandatory

» Communication is the culprit

10,000,000
1,000,000
100,000
10,000
1.000

100

64b Imm
Channel
25p) /word

64b Off-Chip
Channel
1nJ/word

10mm 250pJ, 4 cycles

» Dark Silicon is the future: faster
transistors; most must remain off

» Custom accelerators are the
future; many approaches

» Our project: A Pure Functional
Language to FPGAs

Encoding the Types
Huffman tree nodes: (19 bits)

[o T Leof

oo polnter [Tbitporter o] Branch

Boolean input stream: (14 bts)

» Algebraic Data Types in Hardware e

Character output stream: (19 bits)

Tobipore [hidar Tl Cons
e

Nl
Add Explicit Memory Operations
read CRef ~ Cont
write : Cont

et
data Cont = K0 K It CRef | K2 nt CRef
data Cll - Fibk It CRef | KK Cont Int

X (e o e 1)

» Removing recursion

K0 1) ~ ik (b (1-2) (wite (k2 01 k)
wmm 072~ bk (KK read) (01 72

WL Tk bk n Gurte kot

Functional to Dataflow

Suma st using an accumulator and tilecursion

» Functional to dataflow

» Dataflow to hardware

Input butfer bresks eacy path
Output buffer bresks dataivalid patn

	Related Work
	Our Approach
	Structured, Recursive Data Types
	Recursion to Handle Recursive Data Types
	Simplified Functional to Dataflow
	Dataflow to Hardware

