
Translating Haskell to
Hardware
Lianne Lairmore

Columbia University

FHW Project
Functional Hardware (FHW)

Martha Kim Stephen Edwards Richard Townsend Lianne Lairmore Kuangya Zhai

CPUs
file:
///home/lianne/
haskellGroup/4
0-years-
processor-
trend.eps

Power Consumption

Dedicated Hardware

Intel® Atom™ Processor Z2610,
formerly known as Medfield

What is an FPGA?

Why FPGAs?

FPGAs vs. ASIC

Why FPGAs?

FPGAs vs. GPUs

FPGA
● Energy efficient
● Faster for some algorithms

● Hard to program!

GPU
● Uses a lot of energy
● Floating Point fast
● Parallel code fast
● Poor performance on algorithms with

irregular memory access

Designing Hardware Today

Verilog
module first_counter (input clock , input
reset , input enable ,
output[3:0] counter_out);

 wire clock ;
 wire reset ;
 wire enable ;
 reg [3:0] counter_out ;

 always @ (posedge clock)
 begin
 if (reset == 1'b1) begin
 counter_out <= 4'b0000;
 end
 else if (enable == 1'b1) begin
 counter_out <= counter_out + 1;
 end
 end
 endmodule

● low level
○ wires
○ registers
○ every bit defined

● timing complex
○ sync with a clock
○ sync with other functions

SystemC
#include "systemc.h"
SC_MODULE (first_counter) {
 sc_in_clk clock ;
 sc_in<bool> reset ;
 sc_in<bool> enable;
 sc_out<sc_uint<4> > counter_out;
 sc_uint<4> count;
 void incr_count () {
 if (reset.read() == 1) {
 count = 0;
 counter_out.write(count);
 } else if (enable.read() == 1) {
 count = count + 1;

 counter_out.write(count);
}

 SC_CTOR(first_counter) {
 SC_METHOD(incr_count);
 sensitive << reset;
 sensitive << clock.pos();
 }
 };

● library in C++
● allows higher level design

than Verilog/ VHDL but no
complete automatic
translation to synthesizable
code

● need to understand hardware
and SystemC framework

Why Haskell?
Functional Languages map well to hardware

● referential transparency/side-effect freedom make formal reasoning about
programs vastly easier

● inherently concurrent and race-free (Church and Rosser)
● immutable data structures makes it vastly easier to reason about memory in

the presence of concurrency

Functional HDLs
● μFP

○ Mary Sheeram at Oxford University
○ Functional, untyped, low level

● Lava
○ A continuation of the μFP project
○ Embedded in Haskell
○ Supports simulation, synthesis, and verification.
○ Version developed in Xilinx by Satnam Singh

● Bluespec
○ Created by Arvind at MIT
○ Proprietary HDLs to describe specific types of circuits

● C λaSH
○ Available as part of GHC
○ Allows complex concepts like higher order functions and type inference

We are not creating a functional hardware
description language!

Compiler Overview

haskell GHC

Sequential
IRSystemVerilog

GHC Core-lex and parse
-type check
-pattern matching
-list comprehensions

Combinational
IR-monomorphising

-remove recursion
-remove higher
order functions

Memory Explicit
Combinational IR

-transform
to explicit
memory
access

-conversion
to streams

-code
conversion

Quartus II

FPGA

End Goal

GHC frontend
GHC frontend takes a complex and rich syntax and translates it to a typed core
with relatively simple syntax tree

● lexer/parser
● inferred types
● type checker
● pattern matching
● syntactic sugar (list constructors)

Removing Higher Order Functions

f

Removing Higher Order Functions
● First lambda lift to ensure there are no free variables

f x y = z + x + y

● Passed functions become types

f x = x → data F = F

● Apply function applies the new function type to values

apply F x = f x

● Functions that have functions as arguments now have new types as
arguments and use the apply function when using the function type!

Removing Polymorphism

f :: a->b/
?

/
?

f :: Int->Int /
32

 /
32

f :: Word8->Int /
8

 /
32

Removing Recursion

f x

f(f x)

f(f(f(f x)))

f(f(f x))

f(x)

Remove Recursion

● Combine mutually recursive functions

● Sequence recursive call sites using CPS

● Translate Continuations into types (exactly like removing higher order functions)

● Define Operation type to separate going down recursive calls and and coming
back up

● Transform Continuation type so it is no longer recursive

● Map Operation types to pushes and pops

Hardware Synthesis from a Recursive Functional Language

http://www.cs.columbia.edu/~sedwards/papers/zhai2015hardware.pdf
http://www.cs.columbia.edu/~sedwards/papers/zhai2015hardware.pdf

Translating Types to Bitvectors

data Shape =
Circle Int Int

 | Square Int
 | Rectangle Int Int
 | Triangle Int Int

tag bits first int bits second int bits

0..1 2..33 34..65

Recursive Data types

data List a = Cons a (List a) | Nil

data PList a = PCons a Ptr | PNil

a b c d e Nil

PList

Identifying Memory operations
map f (h:tl) = f h : map f tl

Read Write

map f lst = case list of

(h:tl) -> f h : map f tl

Read Write

Memories

● Type specific
● Independent
● Immutable

Map
Word8

Int

BTree
Word8

List
Word8

BTree
Int List IntAST

Memories

A New Dimension

λ→t
newList = map (*2) [1..10]

Build List:
Push 1

...
Push 10

Map (*):
Read 1

(2*1)
Push 2

…
Read 10

(2*10)
Push 20

Write Nil
Pop 10

Write Cons 10 ptr
…

Pop 1
Write Cons 1 ptr

Write Nil
Pop 20

Write Cons 20 ptr
…

Pop 2
Write Cons 2 ptr

Sequencing Haskell
data Stream a = a :> Stream a

count = 1 :> count + 1 -- produces a stream of 0,1,2,3…

delCount = 10 :> count

addC = count + delCount

cycle 0 1 2 3 4 5 6 7 8 9

count 1 2 3 4 5 6 7 8 9 10

delCount 10 1 2 3 4 5 6 7 8 9

addC 11 3 5 7 9 11 13 15 17 19

FHW - Streaming Haskell
infixr 5 :>
data Stream a = a :> Stream a

repeat :: a -> Stream a
repeat a = s where s = a :> s

map :: (a -> b) -> Stream a -> Stream b
map f (h :> t) = f h :> map f t

zipWith :: (a -> b -> c) -> Stream a -> Stream b -> Stream c
zipWith f (a :> as) (b :> bs) = f a b :> zipWith f as bs

scanl :: (b -> a -> b) -> b -> Stream a -> Stream b
scanl f init_state input_stream = next_state

where
 next_state = zipWith f present_state input_stream
 present_state = init_state :> next_state

Memories in FHW
memory# :: Word# -- ^ Size in words
 -> word -- ^ Initial contents
 -> Stream Bool -- ^ Write commands
 -> Stream Word32 -- ^ Addresses
 -> Stream word -- ^ Write data
 -> Stream word -- ^ Read data
memory# size init write addr wdata = init :> zipWith readOp memoryState addr

where
 updatedMemory = zipWith writeOp memoryState (zipWith3 (\a b c -> (a,b,
c)) write addr wdata)
 memoryState = initialMem :> updatedMemory

 size' :: Word32
 size' = W32# size -- Get away from the primitive type
 initialMem = array (0, size' - 1) [(a,init) | a <- [0..size'-1]]

 writeOp arr (True, a, d) = arr // [(a, d)]
 writeOp arr _ = arr

 readOp arr ad = arr ! ad

Recap
● CPUs aren’t getting much faster
● Hardware designed to do specific work can save energy and improve

performance
● FPGAs are a type of hardware that can be reprogrammed and cost less for

smaller deployments
● Really need a way to program FPGAs that doesn’t suck
● Haskell is really cool and has properties that make transformations to

hardware easier than other things
● Our group wants to make writing programs on FPGAs accessible to people

who don’t know how hardware works

Questions
Thank you!

