
Functioning Hardware
from

Functional Specifications

Stephen A. Edwards

Columbia University

DIMACS Workshop, July 22, 2014

Where’s my 10 GHz processor?

Moore’s Law: Transistors Shrink and Get Cheaper

“The complexity for
minimum component
costs has increased at a
rate of roughly a factor
of two per year.”

Closer to every 24
months

Gordon Moore, Cramming More Components onto Integrated Circuits,

Electronics, 38(8) April 19, 1965.

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

Pollack’s Rule: Diminishing Returns for Processors

1

10

1.00 10.00

Area (X)

In
te

g
e

r
P

e
rf

 (
X

)

Slope = ~0.5

Performance ~ Sqrt(Area)
Single-threaded processor
performance grows with the
square root of area.

It takes
4× the transistors to give
2× the performance.

Fred J. Pollack, MICRO 1999 keynote. Graph from Borkar, DAC 2007.

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

Intel Processors to Scale

4004 ’386 ’486 Pentium P II P III P IV Core 2
1971 1987 1989 1993 1997 1999 2000 2006

What Happened in 2005?

Pentium 4 Core 2 Duo Xeon E5
2000 2006 2012

1 core 2 cores 8 cores
Transistors: 42 M 291 M 2.3 G

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

The Cray-2: Immersed in FluorinertThe Cray-2: Immersed in Fluorinert

1985 ECL 150 kW1985 ECL 150 kW

Liquid Cooled Apple Power Mac G5Liquid Cooled Apple Power Mac G5

2004 CMOS 1.2 kW2004 CMOS 1.2 kW

Where’s all that power going?
What can we do about it?

Dally: Calculation Cheap; Communication Costly

64b FPU

0.1mm2

50pJ /op
1.5GHz

64b 1mm

Channel
25pJ /word

64b Off-Chip

Channel
1nJ /word

64bFloatingPoint

20mm

10
m

m
 2

50
pJ

, 4
 c

yc
le

s

“Chips are power
limited and most power
is spent moving data

Performance =
Parallelism

Efficiency = Locality

Bill Dally’s 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance; Locality for Efficiency

Dally: “Single-thread processors are
in denial about these two facts”

We need
different programming paradigms
and
different architectures
on which to run them.

Massive On-Chip Parallelism: The NVIDIA GTX Titan

The NVIDIA GTX Titan/GK110 GPU

Speed 4.5 TFLOP/s
Frequency 876 MHz
Power 250 W
Transistors 7 G
Area 561 mm2

Cores 2688

Memory

Size 6 Gb
Bus width 384 bits
Clock 1.5 GHz
Bandwidth 288 Gb/s

Price

$1000
e740

The Future is Wires and Memory

How best to use all those
transistors?

Dark SiliconDark Silicon

Taylor and Swanson’s Conservation Cores

BB1

BB0

BB2

CFG
+

+

*

LD

+ LD LD

+1
<N?

+
+ +

ST +

Datapath

Inter-BB
State Machine

0.01 mm2 in 45 nm TSMC
runs at 1.4 GHz

.V

Synopsys
IC Compiler,
P&R, CTS

C-core
Generation

.V

Code to Stylized Verilog and
through a CAD flow.

Custom datapaths, controllers for loop kernels; uses existing
memory hierarchy
Swanson, Taylor, et al. Conservation Cores. ASPLOS 2010.

Bacon et al.’s Liquid Metal

Fig. 2. Block level diagram of DES and Lime code snippet

JITting Lime (Java-like, side-effect-free, streaming) to FPGAs
Huang, Hormati, Bacon, and Rabbah, Liquid Metal, ECOOP 2008.

Arvind, Hoe, et al.’s Bluespec

GCD Mod Rule

Gcd(a, b) if (a b)!(b " 0)# Gcd(a$b, b)
GCD Flip Rule

Gcd(a, b) if a b# Gcd(b, a)

#

δ
Flip,a

δ
Flip,b

Mod,a
δFlip,a

δ

Flip
π
Mod

π

Flip

π
Mod

π

Flip
π

Flip,b
δ

Mod
π

Flip
π

=0
ce

ce

b

a

+

δ
Mod,a

Figure 1.3 Circuit for computing Gcd(a, b) from Example 1.

 OR

 Mod F lip

#

 #

$ % &&&% $n
 % &&&% n $

OR #

Guarded commands and functions to synchronous logic
Hoe and Arvind, Term Rewriting, VLSI 1999

Kuper et al.’s CλaSH

fir (State (xs, hs)) x =
(State (shiftInto x xs , hs), (x ⊲ xs) • hs)

Fig. 6. 4-taps FIR Filter

More operational Haskell specifications of regular structures
Baaij, Kooijman, Kuper, Boeijink, and Gerards. Cλash, DSD 2010

What am I doing about it?

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Why Functional Specifications?

I Referential
transparency/side-effect freedom
make formal reasoning about
programs vastly easier

I Inherently concurrent and
race-free (Thank Church and
Rosser). If you want races and
deadlocks, you need to add
constructs.

I Immutable data structures makes
it vastly easier to reason about
memory in the presence of
concurrency

Why FPGAs?

I We do not know the structure of
future memory systems
Homogeneous/Heterogeneous?
Levels of Hierarchy?
Communication Mechanisms?

I We do not know the architecture
of future multi-cores
Programmable in Assembly/C?
Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but
representative of the long-term solution.

A High-End FPGA: Altera’s Stratix V

2500 dual-ported 2.5KB 600 MHz memory blocks; 6 Mb total

350 36-bit 500 MHz DSP blocks (MAC-oriented datapaths)

300000 6-input LUTs; 28 nm feature size

The Practical Question

How do we synthesize hardware
from pure functional languages

for FPGAs?

Control and datapath are easy; the memory system is
interesting.

To Implement Real Algorithms, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

type ::= Type Primitive type
| Constr Type∗ | · · · | Constr Type∗ Tagged union

Subsume C structs, unions, and enums

Comparable power to C++ objects with virtual methods

“Algebraic” because they are sum-of-product types.

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

type ::= Type Primitive type
| Constr Type∗ | · · · | Constr Type∗ Tagged union

Examples:

data Intlist = Nil −− Linked list of integers
| Cons Int Intlist

data Bintree = Leaf Int −− Binary tree of integers
| Branch Bintree Bintree

data Expr = Literal Int −− Arithmetic expression
| Var String
| Binop Expr Op Expr

data Op = Add | Sub | Mult | Div

Example: Huffman Decoder in Haskell

data HTree = Branch HTree HTree
| Leaf Char

decode :: HTree→ [Bool]→ [Char]

decode table str = bit str table
where

bit (False:xs) (Branch l _) = bit xs l −− 0: left
bit (True:xs) (Branch _ r) = bit xs r −− 1: right
bit x (Leaf c) = c : bit x table −− leaf
bit [] _ = [] −− done

Three data types:

Input bitstream [Bool] (list of Booleans)
Output character stream [Char] (list of Characters)
Huffman tree HTree

Encoding the Types

Huffman tree nodes: (19 bits)

1 Leaf8-bit char

9-bit pointer9-bit pointer 0 Branch

Boolean input stream: (14 bits)

1 ConsB12-bit pointer

0 Nil

Character output stream: (19 bits)

1 Cons8-bit char10-bit pointer

0 Nil

Optimizations

Memory

Optimizations

Memory

Input Output

HTree

Split
Memories

Optimizations

Memory

Input Output

HTree

In FIFO

Mem

Out FIFO

MemHTree

Split
Memories

Use Streams

Optimizations

Memory

Input Output

HTree

In FIFO

Mem

Out FIFO

MemHTree

In FIFO

Mem

Out FIFO

Mem
HTree

Split
Memories

Use Streams

Unroll for locality

Optimizations

Memory

Input Output

HTree

In FIFO

Mem

Out FIFO

MemHTree

In FIFO

Mem

Out FIFO

Mem
HTree

In FIFO

Mem

Out FIFO

Mem

HTree Mem

Split
Memories

Use Streams

Unroll for locality

Speculate

Hardware Synthesis:
Semantics-preserving steps to

a low-level dialect

Removing Recursion: The Fib Example

fib n = case n of
1 → 1
2 → 1
n → fib (n−1) + fib (n−2)

Transform to Continuation-Passing Style

fibk n k = case n of
1 → k 1
2 → k 1
n → fibk (n−1) (λn1→

fibk (n−2) (λn2→
k (n1 + n2)))

fib n = fibk n (λx→ x)

Name Lambda Expressions (Lambda Lifting)

fibk n k = case n of
1 → k 1
2 → k 1
n → fibk (n−1) (k1 n k)

k1 n k n1 = fibk (n−2) (k2 n1 k)
k2 n1 k n2 = k (n1 + n2)
k0 x = x
fib n = fibk n k0

Represent Continuations with a Type

data Cont = K0 | K1 Int Cont | K2 Int Cont

fibk n k = case (n,k) of
(1, k) → kk k 1
(2, k) → kk k 1
(n, k) → fibk (n−1) (K1 n k)

kk k a = case (k, a) of
((K1 n k), n1)→ fibk (n−2) (K2 n1 k)
((K2 n1 k), n2)→ kk k (n1 + n2)
(K0, x) → x

fib n = fibk n K0

Merge Functions

data Cont = K0 | K1 Int Cont | K2 Int Cont
data Call = Fibk Int Cont | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK k 1)
(Fibk 2 k) → fibk (KK k 1)
(Fibk n k) → fibk (Fibk (n−1) (K1 n k))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (K2 n1 k))
(KK (K2 n1 k) n2)→fibk (KK k (n1 + n2))
(KK K0 x) → x

fib n = fibk (Fibk n K0)

Add Explicit Memory Operations

load :: CRef→Cont
store :: Cont→CRef
data Cont = K0 | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK (load k) 1)
(Fibk 2 k) → fibk (KK (load k) 1)
(Fibk n k) → fibk (Fibk (n−1) (store (K1 n k)))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (store (K2 n1 k)))
(KK (K2 n1 k) n2)→fibk (KK (load k) (n1 + n2))
(KK K0 x) → x

fib n = fibk (Fibk n (store K0))

Syntax-Directed Translation to Hardware

fib

fibk

load

store

mem

load′

Call

do

we
di
a

CRef

CRef

Cont

result

n

Cont

Duplication Can Increase Parallelism

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

After duplicating functions:

fib 0 = 0
fib 1 = 1
fib n = fib ′ (n−1) + fib′ ′ (n−2)

fib ′ 0 = 0
fib ′ 1 = 1
fib ′ n = fib ′ (n−1) + fib′ (n−2)

fib ′ ′ 0 = 0
fib ′ ′ 1 = 1
fib ′ ′ n = fib ′ ′ (n−1) + fib′ ′ (n−2)

Here, fib’ and fib” may run in
parallel.

Duplication Can Increase Parallelism

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

After duplicating functions:

fib 0 = 0
fib 1 = 1
fib n = fib ′ (n−1) + fib′ ′ (n−2)

fib ′ 0 = 0
fib ′ 1 = 1
fib ′ n = fib ′ (n−1) + fib′ (n−2)

fib ′ ′ 0 = 0
fib ′ ′ 1 = 1
fib ′ ′ n = fib ′ ′ (n−1) + fib′ ′ (n−2)

Here, fib’ and fib” may run in
parallel.

Unrolling Recursive Data Structures

Original Huffman tree type:

data Htree = Branch Htree HTree | Leaf Char

Unrolled Huffman tree type:

data Htree = Branch Htree′ HTree′ | Leaf Char
data Htree′ = Branch′ Htree′′ HTree′′ | Leaf′ Char
data Htree′′ = Branch′′ Htree HTree | Leaf′ ′ Char

Increases locality: larger data blocks.

A type-aware cache line

I Moore’s Law is alive and well

I But we hit a power wall in 2005.
Massive parallelism now
mandatory

I Communication is the culprit

64b FPU

0.1mm2

50pJ /op
1.5GHz

64b 1mm

Channel
25pJ /word

64b Off-Chip

Channel
1nJ /word

64bFloatingPoint

20mm

10
m

m
 2

50
pJ

, 4
 c

yc
le

s

I Dark Silicon is the future: faster
transistors; most must remain off

I Custom accelerators are the
future; many approaches

I My project: A Pure Functional
Language to FPGAs

BB1

BB0

BB2

CFG

+

+

*

LD

+ LD LD

+1
<N?

+
+ +

ST +

Datapath

Inter-BB
State Machine

0.01 mm2 in 45 nm TSMC
runs at 1.4 GHz

.V

Synopsys
IC Compiler,
P&R, CTS

C-core
Generation

.V

Code to Stylized Verilog and
through a CAD flow.

C et al.

x86 et al.

gcc et al.

ab
st
ra
ct
io
n

timetoday

Future
Langu

ages Higher-level
languages

Future ISAs
More
hardware reality

A Functional IR

FPGAs

I Algebraic Data Types in Hardware

I Optimizations

I Removing recursion

Encoding the Types

Huffman tree nodes: (19 bits)

1 Leaf8-bit char

9-bit pointer9-bit pointer 0 Branch

Boolean input stream: (14 bits)

1 ConsB12-bit pointer

0 Nil

Character output stream: (19 bits)

1 Cons8-bit char10-bit pointer

0 Nil

Optimizations

Memory

Input Output

HTree

In FIFO

Mem

Out FIFO

MemHTree

In FIFO

Mem

Out FIFO

Mem
HTree

In FIFO

Mem

Out FIFO

Mem

HTree Mem

Split
Memories

Use Streams

Unroll for locality

Speculate

Syntax-Directed Translation to Hardware

fib

fibk

load

store

mem

load′

Call

do

we
di
a

CRef

CRef

Cont

result

n

Cont

