Functioning Hardware from
 Functional Specifications

Stephen A. Edwards

Columbia University

DIMACS Workshop, July 22, 2014

Where's my 10 GHz processor?

Moore's Law: Transistors Shrink and Get Cheaper

"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year."

Closer to every 24 months

Gordon Moore, Cramming More Components onto Integrated Circuits, Electronics, 38(8) April 19, 1965.

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005.
Data: Intel, Wikipedia, K. Olukotun

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005.
Data: Intel, Wikipedia, K. Olukotun

Pollack's Rule: Diminishing Returns for Processors

Single-threaded processor performance grows with the square root of area.

It takes
$4 \times$ the transistors to give $2 \times$ the performance.

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005.
Data: Intel, Wikipedia, K. Olukotun

Intel Processors to Scale

What Happened in 2005?

Pentium 4 2000 1 core
Transistors: 42 M

Core 2 Duo 2006

2 cores
291 M

Xeon E5
2012
8 cores
2.3 G

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005.
Data: Intel, Wikipedia, K. Olukotun

The Cray-2:Immersed in Fluorinert

Liquid Cooled Apple Power Mac G5

2004 CMOS 1.2 kW

Where's all that power going? What can we do about it?

Dally: Calculation Cheap; Communication Costly

"Chips are power limited and most power is spent moving data

Performance = Parallelism

Efficiency = Locality

Bill Dally's 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance; Locality for Efficiency

Dally: "Single-thread processors are in denial about these two facts"

We need
different programming paradigms and
different architectures on which to run them.

Massive On-Chip Parallelism: The NVIDIA GTX Titan

The NVIDIA GTX Titan/GK110 GPU

Speed	4.5 TFLOP/s
Frequency	876 MHz
Power	250 W
Transistors	7 G
Area	$561 \mathrm{~mm}^{2}$
Cores	2688

Memory

Size	6 Gb
Bus width	384 bits
Clock	1.5 GHz
Bandwidth	$288 \mathrm{~Gb} / \mathrm{s}$

Price

\$1000
€740

The Future is Wires and Memory

How best to use all those transistors?

Taylor and Swanson's Conservation Cores

Custom datapaths, controllers for loop kernels; uses existing memory hierarchy
Swanson, Taylor, et al. Conservation Cores. ASPLOS 2010.

Bacon et al.'s Liquid Metal

Fig. 2. Block level diagram of DES and Lime code snippet
JITting Lime (Java-like, side-effect-free, streaming) to FPGAs
Huang, Hormati, Bacon, and Rabbah, Liquid Metal, ECOOP 2008.

Arvind, Hoe, et al.'s Bluespec

$$
\begin{aligned}
& \text { GCD Mod Rule } \\
& \quad \operatorname{Gcd}(a, b) \text { if }(a \geq b) \wedge(b \neq 0) \rightarrow \operatorname{Gcd}(a-b, b) \\
& \text { GCD Flip Rule } \\
& \quad \operatorname{Gcd}(a, b) \text { if } a<b \rightarrow \operatorname{Gcd}(b, a)
\end{aligned}
$$

Figure 1.3 Circuit for computing $\operatorname{Gcd}(a, b)$ from Example 1.
Guarded commands and functions to synchronous logic Hoe and Arvind, Term Rewriting, VLSI 1999

Kuper et al.'s $\mathrm{C} \lambda \mathrm{aSH}$

Fig. 6. 4-taps FIR Filter

More operational Haskell specifications of regular structures
Baaij, Kooijman, Kuper, Boeijink, and Gerards. C λ ash, DSD 2010

What am I doing about it?

Functional Programs to FPGAs

$\boldsymbol{\lambda} f .(\boldsymbol{\lambda} x .(f(x x)) \boldsymbol{\lambda} x .(f(x x)))$

Functional Programs to FPGAs

Why Functional Specifications?

- Referential transparency/side-effect freedom make formal reasoning about programs vastly easier
- Inherently concurrent and race-free (Thank Church and Rosser). If you want races and deadlocks, you need to add constructs.
- Immutable data structures makes it vastly easier to reason about memory in the presence of concurrency

Why FPGAs?

- We do not know the structure of future memory systems Homogeneous/Heterogeneous? Levels of Hierarchy? Communication Mechanisms?

- We do not know the architecture of future multi-cores Programmable in Assembly/C? Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but representative of the long-term solution.

A High-End FPGA: Altera's Stratix V

2500 dual-ported 2.5KB 600 MHz memory blocks; 6 Mb total 350 36-bit 500 MHz DSP blocks (MAC-oriented datapaths) 300000 6-input LUTs; 28 nm feature size

The Practical Question

> How do we synthesize hardware from pure functional languages for FPGAs?

Control and datapath are easy; the memory system is interesting.

To Implement Real Algorithms, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

$$
\begin{array}{cl}
\text { type }::=\text { Type } & \text { Primitive type } \\
& \mid \text { Constr Type* }|\cdots| \text { Constr Type* } \\
\text { Tagged union }
\end{array}
$$

Subsume C structs, unions, and enums
Comparable power to C++ objects with virtual methods
"Algebraic" because they are sum-of-product types.

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

$$
\begin{array}{rll}
\text { type }::=\text { Type } & \text { Primitive type } \\
& \mid \text { Constr Type* }|\cdots| \text { Constr Type* } & \text { Tagged union }
\end{array}
$$

Examples:

$$
\begin{gathered}
\text { data Intlist }=\text { Nil -- Linked list of integers } \\
\text { | Cons Int Intlist }
\end{gathered}
$$

data Bintree = Leaf Int $\quad--$ Binary tree of integers Branch Bintree Bintree

$$
\begin{aligned}
\text { data Expr } & =\text { Literal Int } \quad-- \text { Arithmetic expression } \\
& \text { | Var String } \\
& \text { | Binop Expr Op Expr }
\end{aligned}
$$

data $\mathrm{Op}=$ Add \mid Sub \mid Mult \mid Div

Example: Huffman Decoder in Haskell

$\begin{gathered} \text { data HTree }=\text { Branch HTree HTree } \\ \text { \| Leaf Char } \end{gathered}$		
decode :: HTree \rightarrow [Bool] \rightarrow [Char]		
decode table str $=$ bit str table where		
bit (False:xs)	(Branch I _) = bit xs	-- 0: left
bit (True:xs)	(Branch _ r) = bit xs	-- 1: right
bit x	(Leaf c) = c : bit	- leaf
bit []	= []	--done

Three data types:

Input bitstream
Output character stream Huffman tree
[Bool] (list of Booleans)
[Char] (list of Characters)
HTree

Encoding the Types

Huffman tree nodes: (19 bits)

	8 -bit char	1	Leaf
9-bit pointer	9-bit pointer	0	Branch

Boolean input stream: (14 bits)

12-bit pointer	B 1	Cons
	0	Nil

Character output stream: (19 bits)

Optimizations

Optimizations

Use Streams

Use Streams

Optimizations

Unroll for locality

Speculate

Hardware Synthesis:

Semantics-preserving steps to
a low-level dialect

Removing Recursion: The Fib Example

fib n

$$
\begin{array}{ll}
= & \text { case } \mathrm{n} \text { of } \\
& 1 \\
& \rightarrow 1 \\
2 & \rightarrow 1 \\
\mathrm{n} & \rightarrow \text { fib }(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)
\end{array}
$$

Transform to Continuation-Passing Style

fibk $n \mathrm{k}=$ case n of

| 1 | $\rightarrow \mathrm{k} 1$ |
| :--- | :--- | :--- |
| 2 | $\rightarrow \mathrm{k} 1$ |

$n \quad \rightarrow$ fibk $(n-1)(\lambda n 1 \rightarrow$
fibk $(\mathrm{n}-2)(\lambda \mathrm{n} 2 \rightarrow$
$k(n 1+n 2))$)
fib $n=$ fibk $n(\lambda x \rightarrow x)$

Name Lambda Expressions (Lambda Lifting)

fibk n k case n of

$$
\begin{array}{ll}
1 & \rightarrow k 1 \\
2 & \rightarrow k \text { 1 } \\
\mathrm{n} & \rightarrow \text { fibk }(\mathrm{n}-1)(\mathrm{k} 1 \mathrm{nk})
\end{array}
$$

k1	$\mathrm{n} \mathrm{k} \mathrm{n} 1=$	fibk (n-2) (k2 n1 k)
k2	$\mathrm{n} 1 \mathrm{kn2}=$	$k(n 1+n 2)$
k0	$\mathrm{x}=$	x
fib	n	fibk n k0

Represent Continuations with a Type

data Cont $=$ K0 \mid K1 Int Cont | K2 Int Cont

```
fibk n k = case ( n,k) of
    (1, k) }->\mathrm{ kk k 1
    (2, k) }->\mathrm{ kk k 1
    (n, k) -> fibk (n-1) (K1 n k)
kk k a = case (k, a) of
    ((K1 n k), n1) }->\mathrm{ fibk (n-2) (K2 n1 k)
    ((K2 n1 k), n2) -> kk k (n1 + n2)
    (K0, x ) }->\textrm{x
fib n
            = fibk nKO
```


Merge Functions

```
data Cont = K0 | K1 Int Cont | K2 Int Cont
data Call = Fibk Int Cont | KK Cont Int
fibk z = case z of
    (Fibk 1 k) }->\mathrm{ fibk (KK k 1)
    (Fibk 2 k) }->\mathrm{ fibk (KK k 1)
    (Fibk n k) }->\mathrm{ fibk (Fibk (n-1) (K1 n k))
    (KK (K1 n k) n1) -> fibk (Fibk (n-2) (K2 n1 k))
    (KK (K2 n1 k) n2) -> fibk (KK k (n1 + n2))
    (KK K0 x ) }->\textrm{x
fib n
        = fibk(Fibk n K0)
```


Add Explicit Memory Operations

```
load :: CRef }->\mathrm{ Cont
store :: Cont }->\mathrm{ CRef
data Cont = K0| K1 Int CRef| K2 Int CRef
data Call = Fibk Int CRef| KK Cont Int
fibk z = case z of
    (Fibk 1 k) }->\mathrm{ fibk (KK (load k) 1)
    (Fibk 2 k) }->\mathrm{ fibk (KK (load k) 1)
    (Fibk n k) }->\mathrm{ fibk (Fibk (n-1) (store (K1 n k)))
    (KK (K1 n k) n1) }->\mathrm{ fibk (Fibk (n-2) (store (K2 n1 k)))
    (KK (K2 n1 k) n2) -> fibk (KK (load k) (n1 + n2))
    (KK K0 x ) }->\textrm{x
fib n
        = fibk (Fibk n (store K0))
```


Syntax-Directed Translation to Hardware

Duplication Can Increase Parallelism

fib $0=0$
fib $1=1$
fib $n=f i b(n-1)+f i b(n-2)$

Duplication Can Increase Parallelism

After duplicating functions:

$$
\begin{aligned}
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\mathrm{fib}^{\prime} \quad(n-1)+\mathrm{fib}^{\prime \prime}(n-2) \\
& \mathrm{fib}^{\prime} 0=0 \\
& \mathrm{fib}^{\prime} 1=1 \\
& \mathrm{fib}^{\prime} n=\mathrm{fib}^{\prime} \quad(n-1)+\mathrm{fib}^{\prime}(n-2) \\
& \mathrm{fib}^{\prime \prime} 0=0 \\
& \mathrm{fib}^{\prime \prime} 1=1 \\
& \mathrm{fib}^{\prime \prime} \quad n=\mathrm{fib}^{\prime \prime} \quad(n-1)+\mathrm{fib}^{\prime \prime}(n-2)
\end{aligned}
$$

Here, fib' and fib" may run in parallel.

Unrolling Recursive Data Structures

Original Huffman tree type:
data Htree $=$ Branch Htree HTree | Leaf Char

Unrolled Huffman tree type:
data Htree $=$ Branch Htree' HTree' | Leaf Char data Htree ${ }^{\prime}=$ Branch $^{\prime}$ Htree ${ }^{\prime \prime}$ HTree $^{\prime \prime}$ | Leaf' Char data Htree ${ }^{\prime \prime}=$ Branch $^{\prime \prime}$ Htree HTree | Leaf" Char

Increases locality: larger data blocks.
A type-aware cache line

- Dark Silicon is the future: faster transistors; most must remain off
- Custom accelerators are the future; many approaches
- My project: A Pure Functional Language to FPGAs

Boolean input stream: (14 bits)

12-bit pointer	B	1
	Cons	
	0	Nil

Character output stream: (19 bits)

Syntax-Directed Translation to Hardware

