
Functioning Hardware
from

Functional Specifications

Stephen A. Edwards

Columbia University

ACSD Keynote, Tunis, June 26, 2014

Where’s my 10 GHz processor?

Moore’s Law: Transistors Shrink and Get Cheaper

“The complexity for
minimum component
costs has increased at a
rate of roughly a factor
of two per year.”

Closer to every 24
months

Gordon Moore, Cramming More Components onto Integrated Circuits,

Electronics, 38(8) April 19, 1965.

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

Pollack’s Rule: Diminishing Returns for Processors

1

10

1.00 10.00

Area (X)

In
te

g
e

r
P

e
rf

 (
X

)

Slope = ~0.5

Performance ~ Sqrt(Area)
Single-threaded processor
performance grows with the
square root of area.

It takes
4× the transistors to give
2× the performance.

Fred J. Pollack, MICRO 1999 keynote. Graph from Borkar, DAC 2007.

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

Intel Processors to Scale

4004 ’386 ’486 Pentium P II P III P IV Core 2
1971 1987 1989 1993 1997 1999 2000 2006

What Happened in 2005?

Pentium 4 Core 2 Duo Xeon E5
2000 2006 2012

1 core 2 cores 8 cores
Transistors: 42 M 291 M 2.3 G

Intel CPU Trends

Sutter, The Free Lunch is Over, DDJ 2005. Data: Intel, Wikipedia, K. Olukotun

The Cray-2: Immersed in FluorinertThe Cray-2: Immersed in Fluorinert

1985 ECL 150 kW1985 ECL 150 kW

Heat Flux in IBM Mainframes: A Familiar Trend

Schmidt. Liquid Cooling is Back. Electronics Cooling. August 2005.

Liquid Cooled Apple Power Mac G5Liquid Cooled Apple Power Mac G5

2004 CMOS 1.2 kW2004 CMOS 1.2 kW

Where’s all that power going?
What can we do about it?

Dally: Calculation Cheap; Communication Costly

64b FPU

0.1mm2

50pJ /op
1.5GHz

64b 1mm

Channel
25pJ /word

64b Off-Chip

Channel
1nJ /word

64bFloatingPoint

20mm

10
m

m
 2

50
pJ

, 4
 c

yc
le

s

“Chips are power
limited and most power
is spent moving data

Performance =
Parallelism

Efficiency = Locality

Bill Dally’s 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance; Locality for Efficiency

Dally: “Single-thread processors are
in denial about these two facts”

We need
different programming paradigms
and
different architectures
on which to run them.

Massive On-Chip Parallelism: The NVIDIA GTX Titan

The NVIDIA GTX Titan/GK110 GPU
Speed 4.5 TFLOP/s
Frequency 876 MHz
Power 250 W
Transistors 7 G
Area 561 mm2

Cores 2688

Memory

Size 6 Gb
Bus width 384 bits
Clock 1.5 GHz
Bandwidth 288 Gb/s

Price

$1000
e730

TND 1660

The Future is Wires and Memory

How best to use all those
transistors?

Dark SiliconDark Silicon

Xilinx’s Vivado (Was xPilot, AutoESL)

Page 11

SystemSystem--level Synthesis Data Modellevel Synthesis Data Model
 SSDMSSDM (System(System--level Synthesis Data Model)level Synthesis Data Model)
!! Hierarchical Hierarchical netlistnetlist of concurrent processes and communication of concurrent processes and communication

channelschannels

!! Each leaf process contains a sequential program which is represeEach leaf process contains a sequential program which is representednted
by an extended LLVM IR with hardwareby an extended LLVM IR with hardware--specific semanticsspecific semantics
•• Port / IO interfaces, bitPort / IO interfaces, bit--vector manipulations, cyclevector manipulations, cycle--level notationslevel notations

HardwareHardware--Specific SSDM SemanticsSpecific SSDM Semantics
Process port/interface semanticsProcess port/interface semantics

FIFO:FIFO: FifoReadFifoRead() / () / FifoWriteFifoWrite()()
Buffer: Buffer: BuffReadBuffRead() / () / BuffWriteBuffWrite()()
Memory:Memory: MemReadMemRead() / () / MemWriteMemWrite()()

BitBit--vector manipulationvector manipulation
Bit extraction / concatenation / insertionBit extraction / concatenation / insertion
BitBit--width attributes for every operation and every valuewidth attributes for every operation and every value

CycleCycle--level notationlevel notation
Clock: Clock: waitClockEventwaitClockEvent()()

SystemC input; classical high-level synthesis for processes
Jason Cong et al. ISARS 2005

Taylor and Swanson’s Conservation Cores

BB1

BB0

BB2

CFG
+

+

*

LD

+ LD LD

+1
<N?

+
+ +

ST +

Datapath

Inter-BB
State Machine

0.01 mm2 in 45 nm TSMC
runs at 1.4 GHz

.V

Synopsys
IC Compiler,
P&R, CTS

C-core
Generation

.V

Code to Stylized Verilog and
through a CAD flow.

Custom datapaths, controllers for loop kernels; uses existing
memory hierarchy
Swanson, Taylor, et al. Conservation Cores. ASPLOS 2010.

Bacon et al.’s Liquid Metal

Fig. 2. Block level diagram of DES and Lime code snippet

JITting Lime (Java-like, side-effect-free, streaming) to FPGAs
Huang, Hormati, Bacon, and Rabbah, Liquid Metal, ECOOP 2008.

Goldstein et al.’s Phoenix

int squares()
{

int i = 0,
sum = 0;

for (;i<10;i++)
sum += i*i;

return sum;
}

isum

01

* +

+

sum

retsum

1

<=

i

10

!

2

1

eta

merge

eta

3

Figure 3: C program and its representation comprising three hy-

perblocks; each hyperblock is shown as a numbered rectangle. The

dotted lines represent predicate values. (This figure omits the token

edges used for memory synchronization.)

Figure 8: Memory access network and implementation of the value

and token forwarding network. The LOAD produces a data value

consumed by the oval node. The STORE node may depend on the

load (i.e., we have a token edge between the LOAD and the STORE,

shown as a dashed line). The token travels to the root of the tree,

which is a load-store queue (LSQ).

C to asynchronous logic, monolithic memory
Budiu, Venkataramani, Chelcea and Goldstein, Spatial Computation, ASPLOS 2004.

Ghica et al.’s Geometry of Synthesis

com
SEQ

WHILE

SEQ
ASG

DELTA

exp

exp

exp

com

var

com

DER

D

D

X

T

D

D
init

curr

more

next

f

D

D

D

Figure 1. In-place map schematic and implementation

226

Algol-like imperative language to handshake circuits
Ghica, Smith, and Singh. Geometry of Synthesis IV, ICFP 2011

Greaves and Singh’s Kiwi

In this section we demonstrate how a circuit that performs

communication over an I2C bus can be expressed using

the Kiwi library. The motivation for tackling such an ex-

ample arises from the fact that the typical coding style for

such circuits involves hand coding state machines using

nested case statements in VHDL (or equivalent features

in Verilog). In particular, the sequencing of operations

public static void SendDeviceID()
{ int deviceID = 0x76;

for (int i = 7; i > 0; i−−)
{ scl = false;

sda out = (deviceID & 64) != 0;
Kiwi.Pause(); // Set it i−th bit of the device ID
scl = true; Kiwi.Pause(); // Pulse SCL
scl = false; deviceID = deviceID << 1;
Kiwi.Pause();

}
}

C# with a concurrency library to FPGAs
Greaves and Singh. Kiwi, FCCM 2008

Arvind, Hoe, et al.’s Bluespec

GCD Mod Rule

Gcd(a, b) if (a b)!(b " 0)# Gcd(a$b, b)
GCD Flip Rule

Gcd(a, b) if a b# Gcd(b, a)

#

δ
Flip,a

δ
Flip,b

Mod,a
δFlip,a

δ

Flip
π
Mod

π

Flip

π
Mod

π

Flip
π

Flip,b
δ

Mod
π

Flip
π

=0
ce

ce

b

a

+

δ
Mod,a

Figure 1.3 Circuit for computing Gcd(a, b) from Example 1.

 OR

 Mod F lip

#

 #

$ % &&&% $n
 % &&&% n $

OR #

Guarded commands and functions to synchronous logic
Hoe and Arvind, Term Rewriting, VLSI 1999

Sheeran et al.’s Lava

where the constant WN is de,ned as e j "#N -

Each signal in the transformed sequence X5k6 depends on
every input signal x5n6: the DFT operation is therefore ex?
pensive to implement directly-

The Fast Fourier Transforms 5FFTs6 are e@cient algorithms
for computing the DFT that exploit symmetries in the twid$
dle factors W k

N - The laws that state these symmetries areA

W !
N B C

WN
N B C

W k
n W

m
n B W k"m

n

W k
n B W k

 n & 5n& k ! N6

We will later use the fact that W #
$ equals "j-

These lawsE together with a restriction of sequence length
5for example to powers of two6E simplify the computations-
An FFT implementation has fewer gates than the original
direct DFT implementationE which reduces circuit area and
power consumption- FFTs are key building blocks in most
signal processing applications-

We discuss the description of circuits for two diIerent FFT
algorithmsA the Radix?K FFT and the Radix?K FFT LHeNOP-

 !" Two FFT circuits

The decimation in time Radix?K FFT is a standard al?
gorithmE which operates on input sequences of which the
length is a power of two LPMNKP- This restriction makes it
possible to divide the input into smaller sequences by re?
peated halving until sequences of length two are reached-
A DFT of length two can be computed by a simple butter$
1y circuit- ThenE at each stageE the smaller sequences are
combined to form bigger transformed sequences until the
complete DFT has been produced-

The Radix?K FFT algorithm can be mapped onto a com?
binational network as in ,gure SE which shows a size CU
implementation- In this diagramE digits and twiddle factors
on a wire indicate constant multiplication and the merging
of two arrows means addition- The bounding boxes contain
two FFTs of size W-

A less well?known algorithm for computation of the DFT is
the decimation in frequency Radix?K FFTE which assumes
that the input length N is a power of four-

The corresponding circuit implementation 5in ,gure W6 is
also very regular and might be mistaken for a reversed
Radix?K circuit at a passing glance- HoweverE it diIers sub?
stantially in that two diIerent butterXy networks are used in
each stageE the twiddle factor multiplications are modi,edE
and "j multiplication stages have been inserted-

 ! Components

We need three main components to implement FFT circuits-
The ,rst is a butter1y circuitE which takes two inputs x# and
x to two outputs x# Y x and x# " x 5see ,gure N6- It is
the heart of FFT implementations since it computes the K?
point DFT- Systems of such components will be applied to
the in?signals in many stages 5,gures S and W6-

The FFT butterXy stages are constructed by ri[ing together
two halves of a sequence of length kE processing them by a

Figure NA A butterXy

Figure C\A A butterXy stage of size W expressed with ri[ing

column of k)K butterXy circuitsE and unri[ing the result
5see ,gure C\6- Here riffle is the shu[e of a card sharp
who perfectly interleaves the cards of two half decks-

bfly '' CmplxArithmetic m
01 2CmplxSig5 61 m 2CmplxSig5

bfly 2i78 i95 0
do o7 <6 csubtract @i78 i9A

o9 <6 cplus @i78 i9A
return 2o78 o95

bflys '' CmplxArithmetic m
01 Int 61 2CmplxSig5 61 m 2CmplxSig5

bflys n 0
riffle 161 raised n two bfly 161 unriffle

Another important component of an FFT algorithm is mul?
tiplication by a complex constantE which can be imple?
mented using a primitive component called a twiddle factor
multiplier- This circuit maps a single complex input x to
x W k

N for some N and k- The circuit w n k computes
W k
N -

wMult '' CmplxArithmetic m
01 Int 61 Int 61 CmplxSig 61 m CmplxSig

wMult n k a 0
do twd <6 w @n8 kA

ctimes @twd8 aA

The multiplication of complete buses with "j is de,ned as
followsE using the fact that W #

$ equals "j-

minusJ '' CmplxArithmetic m
01 2CmplxSig5 61 m 2CmplxSig5

minusJ 0 mapM @wMult H 7A

Another useful component is the bit reversal permutationE
used in the ,rst or last stage of the FFT circuits- A new
wire position is the reversed binary representation of the old
position LPMNKP- The permutation can be expressed using
riffleA

bitRev '' Monad m 01 Int 61 2a5 61 m 2a5
bitRev n 0
compose 2 raised @n6iA two riffle

K i <6 27LLn5
5

where the constant WN is de,ned as e j "#N -

Each signal in the transformed sequence X5k6 depends on
every input signal x5n6: the DFT operation is therefore ex?
pensive to implement directly-

The Fast Fourier Transforms 5FFTs6 are e@cient algorithms
for computing the DFT that exploit symmetries in the twid$
dle factors W k

N - The laws that state these symmetries areA

W !
N B C

WN
N B C

W k
n W

m
n B W k"m

n

W k
n B W k

 n & 5n& k ! N6

We will later use the fact that W #
$ equals "j-

These lawsE together with a restriction of sequence length
5for example to powers of two6E simplify the computations-
An FFT implementation has fewer gates than the original
direct DFT implementationE which reduces circuit area and
power consumption- FFTs are key building blocks in most
signal processing applications-

We discuss the description of circuits for two diIerent FFT
algorithmsA the Radix?K FFT and the Radix?K FFT LHeNOP-

 !" Two FFT circuits

The decimation in time Radix?K FFT is a standard al?
gorithmE which operates on input sequences of which the
length is a power of two LPMNKP- This restriction makes it
possible to divide the input into smaller sequences by re?
peated halving until sequences of length two are reached-
A DFT of length two can be computed by a simple butter$
1y circuit- ThenE at each stageE the smaller sequences are
combined to form bigger transformed sequences until the
complete DFT has been produced-

The Radix?K FFT algorithm can be mapped onto a com?
binational network as in ,gure SE which shows a size CU
implementation- In this diagramE digits and twiddle factors
on a wire indicate constant multiplication and the merging
of two arrows means addition- The bounding boxes contain
two FFTs of size W-

A less well?known algorithm for computation of the DFT is
the decimation in frequency Radix?K FFTE which assumes
that the input length N is a power of four-

The corresponding circuit implementation 5in ,gure W6 is
also very regular and might be mistaken for a reversed
Radix?K circuit at a passing glance- HoweverE it diIers sub?
stantially in that two diIerent butterXy networks are used in
each stageE the twiddle factor multiplications are modi,edE
and "j multiplication stages have been inserted-

 ! Components

We need three main components to implement FFT circuits-
The ,rst is a butter1y circuitE which takes two inputs x# and
x to two outputs x# Y x and x# " x 5see ,gure N6- It is
the heart of FFT implementations since it computes the K?
point DFT- Systems of such components will be applied to
the in?signals in many stages 5,gures S and W6-

The FFT butterXy stages are constructed by ri[ing together
two halves of a sequence of length kE processing them by a

-1

x

y x - y

x + y

Figure NA A butterXy

-1

-1

-1

-1

Figure C\A A butterXy stage of size W expressed with ri[ing

column of k)K butterXy circuitsE and unri[ing the result
5see ,gure C\6- Here riffle is the shu[e of a card sharp
who perfectly interleaves the cards of two half decks-

bfly '' CmplxArithmetic m
01 2CmplxSig5 61 m 2CmplxSig5

bfly 2i78 i95 0
do o7 <6 csubtract @i78 i9A

o9 <6 cplus @i78 i9A
return 2o78 o95

bflys '' CmplxArithmetic m
01 Int 61 2CmplxSig5 61 m 2CmplxSig5

bflys n 0
riffle 161 raised n two bfly 161 unriffle

Another important component of an FFT algorithm is mul?
tiplication by a complex constantE which can be imple?
mented using a primitive component called a twiddle factor
multiplier- This circuit maps a single complex input x to
x W k

N for some N and k- The circuit w n k computes
W k
N -

wMult '' CmplxArithmetic m
01 Int 61 Int 61 CmplxSig 61 m CmplxSig

wMult n k a 0
do twd <6 w @n8 kA

ctimes @twd8 aA

The multiplication of complete buses with "j is de,ned as
followsE using the fact that W #

$ equals "j-

minusJ '' CmplxArithmetic m
01 2CmplxSig5 61 m 2CmplxSig5

minusJ 0 mapM @wMult H 7A

Another useful component is the bit reversal permutationE
used in the ,rst or last stage of the FFT circuits- A new
wire position is the reversed binary representation of the old
position LPMNKP- The permutation can be expressed using
riffleA

bitRev '' Monad m 01 Int 61 2a5 61 m 2a5
bitRev n 0
compose 2 raised @n6iA two riffle

K i <6 27LLn5
5

Functional specifications of regular structures
Bjesse, Claessen, Sheeran, and Singh. Lava, ICFP 1998

Kuper et al.’s CλaSH

fir (State (xs, hs)) x =
(State (shiftInto x xs , hs), (x ⊲ xs) • hs)

Fig. 6. 4-taps FIR Filter

More operational Haskell specifications of regular structures
Baaij, Kooijman, Kuper, Boeijink, and Gerards. Cλash, DSD 2010

What am I doing about it?

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

More Motivation

C et al.

x86 et al.

gcc et al.

ab
st

ra
ct

io
n

timetoday

Future Languages Higher-level
languages

Future ISAs
More
hardware reality

A Functional IR

FPGAs

More Motivation

C et al.

x86 et al.

gcc et al.

ab
st

ra
ct

io
n

timetoday

Future Languages Higher-level
languages

Future ISAs
More
hardware reality

A Functional IR

FPGAs

More Motivation

C et al.

x86 et al.

gcc et al.

ab
st

ra
ct

io
n

timetoday

Future Languages Higher-level
languages

Future ISAs
More
hardware reality

A Functional IR

FPGAs

Why Functional Specifications?

I Referential
transparency/side-effect freedom
make formal reasoning about
programs vastly easier

I Inherently concurrent and
race-free (Thank Church and
Rosser). If you want races and
deadlocks, you need to add
constructs.

I Immutable data structures makes
it vastly easier to reason about
memory in the presence of
concurrency

Why FPGAs?

I We do not know the structure of
future memory systems
Homogeneous/Heterogeneous?
Levels of Hierarchy?
Communication Mechanisms?

I We do not know the architecture
of future multi-cores
Programmable in Assembly/C?
Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but
representative of the long-term solution.

A High-End FPGA: Altera’s Stratix V

2500 dual-ported 2.5KB 600 MHz memory blocks; 6 Mb total

350 36-bit 500 MHz DSP blocks (MAC-oriented datapaths)

300000 6-input LUTs; 28 nm feature size

The Practical Question

How do we synthesize hardware
from pure functional languages

for FPGAs?

Control and datapath are easy; the memory system is
interesting.

To Implement Real Algorithms, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

type ::= Type Primitive type
| Constr Type∗ | · · · | Constr Type∗ Tagged union

Subsume C structs, unions, and enums

Comparable power to C++ objects with virtual methods

“Algebraic” because they are sum-of-product types.

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

type ::= Type Primitive type
| Constr Type∗ | · · · | Constr Type∗ Tagged union

Examples:

data Intlist = Nil −− Linked list of integers
| Cons Int Intlist

data Bintree = Leaf Int −− Binary tree of integers
| Branch Bintree Bintree

data Expr = Literal Int −− Arithmetic expression
| Var String
| Binop Expr Op Expr

data Op = Add | Sub | Mult | Div

Algebraic Datatypes in Hardware: Lists

data IntList = Cons Int IntList
| Nil

01323348
1 Consintpointer

0 Nil

Datatypes in Hardware: Binary Trees

data IntTree = Branch IntTree IntTree
| Leaf Int

01161732
0 Branchpointerpointer

1 Leafint

Example: Huffman Decoder in Haskell

data HTree = Branch HTree HTree
| Leaf Char

decode :: HTree→ [Bool]→ [Char]

decode table str = bit str table
where

bit (False:xs) (Branch l _) = bit xs l −− 0: left
bit (True:xs) (Branch _ r) = bit xs r −− 1: right
bit x (Leaf c) = c : bit x table −− leaf
bit [] _ = [] −− done

Three data types:

Input bitstream [Bool] (list of Booleans)
Output character stream [Char] (list of Characters)
Huffman tree HTree

Encoding the Types

Huffman tree nodes: (19 bits)

1 Leaf8-bit char

9-bit pointer9-bit pointer 0 Branch

Boolean input stream: (14 bits)

1 ConsB12-bit pointer

0 Nil

Character output stream: (19 bits)

1 Cons8-bit char10-bit pointer

0 Nil

Optimizations

Memory

Optimizations

Memory

Input Output

HTree

Split
Memories

Optimizations

Memory

Input Output

HTree

In FIFO

Mem

Out FIFO

MemHTree

Split
Memories

Use Streams

Optimizations

Memory

Input Output

HTree

In FIFO

Mem

Out FIFO

MemHTree

In FIFO

Mem

Out FIFO

Mem
HTree

Split
Memories

Use Streams

Unroll for locality

Optimizations

Memory

Input Output

HTree

In FIFO

Mem

Out FIFO

MemHTree

In FIFO

Mem

Out FIFO

Mem
HTree

In FIFO

Mem

Out FIFO

Mem

HTree Mem

Split
Memories

Use Streams

Unroll for locality

Speculate

Hardware Synthesis:
Semantics-preserving steps to

a low-level dialect

High-Level Synthesis in a Functional Setting

diffeq a dx x u y =
if x < a then

diffeq a dx (x + dx) (u − 5∗x∗u∗dx − 3∗y∗dx) (y + u∗dx)
else y

Direct translation: too many multipliers

a

dx

+

x

<

done

u

−
×

×
3

−
×

×
×

5 y

+
×

result

Scheduling: Time-multiplex Two Multiplers

diffeq a dx x u y =
if x < a then

diffeq a dx (x + dx) (u − 5∗x∗u∗dx − 3∗y∗dx) (y + u∗dx)
else y

×
u dx

×
5 x

+
x dx

x

<
x a

c× ×
3 y

×
dx

×
u dx

−
u

+
y

y

−
u

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Scheduling: Mapping to a Datapath

diffeq a dx x u y =
if x < a then

diffeq a dx (x + dx) (u − 5∗x∗u∗dx − 3∗y∗dx) (y + u∗dx)
else y

Introduce a function representing the datapath

dpath m1 m2 m3 m4 a1 a2 s1 s2 c1 c2 k =
k (m1 ∗ m2) (m3 ∗ m4) (a1 + a2) (s1 − s2) (c1 < c2)

and re-express the function with the datapath

diffeq a dx x u y =
dpath u dx 5 x x dx 0 0 x a (λpa pb x _ c → if not c then y else
dpath pa pb 3 y 0 0 0 0 0 0 (λpa pb _ _ _ →
dpath u dx dx pb 0 0 u pa 0 0 (λpa pb _ d _ →
dpath 0 0 0 0 y pa d pb 0 0 (λ_ _ s d _ → diffeq a dx x d s))))

Name Lambda Expressions (Continuations)

diffeq a dx x u y =
if x < a then

diffeq a dx (x + dx) (u − 5∗x∗u∗dx − 3∗y∗dx) (y + u∗dx)
else y

k0 a dx x _ _ s d _ =
dpath d dx 5 x x dx 0 0 x a (k1 a dx d s)

k1 a dx u y pa pb s _ c =
if not c then y else
dpath pa pb 3 y 0 0 0 0 0 0 (k2 a dx s u y)

k2 a dx x u y pa pb _ _ _ =
dpath u dx dx pb 0 0 u pa 0 0 (k3 a dx x y)

k3 a dx x y pa pb _ d _ =
dpath 0 0 0 0 y pa d pb 0 0 (k0 a dx x)

diffeq a dx x u y = k0 a dx x 0 0 y u False

Encode Continuations as a Type
data Cont = K0 Int Int Int

| K1 Int Int Int Int
| K2 Int Int Int Int Int
| K3 Int Int Int Int

dpath m1 m2 m3 m4 a1 a2 s1 s2 c1 c2 k =
kk k (m1 ∗ m2) (m3 ∗ m4) (a1 + a2) (s1 − s2) (c1 < c2)

kk k m1 m2 a s c = case (k, m1, m2, a, s, c) of
(K0 a dx x ,_ ,_ , s ,d,_) →

dpath d dx 5 x x dx 0 0 x a (K1 a dx d s)
(K1 a dx u y,pa,pb,s,_,c) → if not c then y else

dpath pa pb 3 y 0 0 0 0 0 0 (K2 a dx s u y)
(K2 a dx x u y,pa,pb,_,_,_) →

dpath u dx dx pb 0 0 u pa 0 0 (K3 a dx x y)
(K3 a dx x y,pa,pb,_,d,_) →

dpath 0 0 0 0 y pa d pb 0 0 (K0 a dx x)

diffeq a dx x u y = kk (K0 a dx x) 0 0 y u False

Syntax-Directed Translation to Hardware

m1m2

×

m3m4

×

a1 a2

+

s1 s2

−

c1 c2

<

a dx x u y

Removing Recursion: The Fib Example

fib n = case n of
1 → 1
2 → 1
n → fib (n−1) + fib (n−2)

Transform to Continuation-Passing Style

fibk n k = case n of
1 → k 1
2 → k 1
n → fibk (n−1) (λn1→

fibk (n−2) (λn2→
k (n1 + n2)))

fib n = fibk n (λx→ x)

Name Lambda Expressions (Lambda Lifting)

fibk n k = case n of
1 → k 1
2 → k 1
n → fibk (n−1) (k1 n k)

k1 n k n1 = fibk (n−2) (k2 n1 k)
k2 n1 k n2 = k (n1 + n2)
k0 x = x
fib n = fibk n k0

Represent Continuations with a Type

data Cont = K0 | K1 Int Cont | K2 Int Cont

fibk n k = case (n,k) of
(1, k) → kk k 1
(2, k) → kk k 1
(n, k) → fibk (n−1) (K1 n k)

kk k a = case (k, a) of
((K1 n k), n1)→ fibk (n−2) (K2 n1 k)
((K2 n1 k), n2)→ kk k (n1 + n2)
(K0, x) → x

fib n = fibk n K0

Merge Functions

data Cont = K0 | K1 Int Cont | K2 Int Cont
data Call = Fibk Int Cont | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK k 1)
(Fibk 2 k) → fibk (KK k 1)
(Fibk n k) → fibk (Fibk (n−1) (K1 n k))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (K2 n1 k))
(KK (K2 n1 k) n2)→fibk (KK k (n1 + n2))
(KK K0 x) → x

fib n = fibk (Fibk n K0)

Add Explicit Memory Operations

load :: CRef→Cont
store :: Cont→CRef
data Cont = K0 | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK (load k) 1)
(Fibk 2 k) → fibk (KK (load k) 1)
(Fibk n k) → fibk (Fibk (n−1) (store (K1 n k)))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (store (K2 n1 k)))
(KK (K2 n1 k) n2)→fibk (KK (load k) (n1 + n2))
(KK K0 x) → x

fib n = fibk (Fibk n (store K0))

Syntax-Directed Translation to Hardware

fib

fibk

load

store

mem

load′

Call

do

we
di
a

CRef

CRef

Cont

result

n

Cont

Duplication Can Increase Parallelism

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

After duplicating functions:

fib 0 = 0
fib 1 = 1
fib n = fib ′ (n−1) + fib′ ′ (n−2)

fib ′ 0 = 0
fib ′ 1 = 1
fib ′ n = fib ′ (n−1) + fib′ (n−2)

fib ′ ′ 0 = 0
fib ′ ′ 1 = 1
fib ′ ′ n = fib ′ ′ (n−1) + fib′ ′ (n−2)

Here, fib’ and fib” may run in
parallel.

Duplication Can Increase Parallelism

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

After duplicating functions:

fib 0 = 0
fib 1 = 1
fib n = fib ′ (n−1) + fib′ ′ (n−2)

fib ′ 0 = 0
fib ′ 1 = 1
fib ′ n = fib ′ (n−1) + fib′ (n−2)

fib ′ ′ 0 = 0
fib ′ ′ 1 = 1
fib ′ ′ n = fib ′ ′ (n−1) + fib′ ′ (n−2)

Here, fib’ and fib” may run in
parallel.

Unrolling Recursive Data Structures

Original Huffman tree type:

data Htree = Branch Htree HTree | Leaf Char

Unrolled Huffman tree type:

data Htree = Branch Htree′ HTree′ | Leaf Char
data Htree′ = Branch′ Htree′′ HTree′′ | Leaf′ Char
data Htree′′ = Branch′′ Htree HTree | Leaf′ ′ Char

Increases locality: larger data blocks.

A type-aware cache line

I Moore’s Law is alive and well

I But we hit a power wall in 2005.
Massive parallelism now
mandatory

I Communication is the culprit

64b FPU

0.1mm2

50pJ /op
1.5GHz

64b 1mm

Channel
25pJ /word

64b Off-Chip

Channel
1nJ /word

64bFloatingPoint

20mm

10
m

m
 2

50
pJ

, 4
 c

yc
le

s

I Dark Silicon is the future: faster
transistors; most must remain off

I Custom accelerators are the
future; many approaches

I My project: A Pure Functional
Language to FPGAs

BB1

BB0

BB2

CFG

+

+

*

LD

+ LD LD

+1
<N?

+
+ +

ST +

Datapath

Inter-BB
State Machine

0.01 mm2 in 45 nm TSMC
runs at 1.4 GHz

.V

Synopsys
IC Compiler,
P&R, CTS

C-core
Generation

.V

Code to Stylized Verilog and
through a CAD flow.

C et al.

x86 et al.

gcc et al.

ab
st
ra
ct
io
n

timetoday

Future
Langu

ages Higher-level
languages

Future ISAs
More
hardware reality

A Functional IR

FPGAs

I Algebraic Data Types in Hardware

I Optimizations

I Removing recursion

Encoding the Types

Huffman tree nodes: (19 bits)

1 Leaf8-bit char

9-bit pointer9-bit pointer 0 Branch

Boolean input stream: (14 bits)

1 ConsB12-bit pointer

0 Nil

Character output stream: (19 bits)

1 Cons8-bit char10-bit pointer

0 Nil

Optimizations

Memory

Input Output

HTree

In FIFO

Mem

Out FIFO

MemHTree

In FIFO

Mem

Out FIFO

Mem
HTree

In FIFO

Mem

Out FIFO

Mem

HTree Mem

Split
Memories

Use Streams

Unroll for locality

Speculate

Syntax-Directed Translation to Hardware

fib

fibk

load

store

mem

load′

Call

do

we
di
a

CRef

CRef

Cont

result

n

Cont

