
Compiling Parallel Algorithms to Memory
Systems: Some Preliminary Results

Stephen A. Edwards

Columbia University

CSL Group Seminar, March 25, 2013

(λx.?) f = FPGA

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Moore’s Law: Lots of Cheap Transistors...

“The complexity for
minimum component
costs has increased at a
rate of roughly a factor of
two per year.”

Closer to every 24 months

Gordon Moore, Cramming More Components onto Integrated Circuits,

Electronics, 38(8) April 19, 1965.

Pollack’s Rule: ...Give Diminishing Returns for Processors

1

10

1.00 10.00

Area (X)

In
te

g
e

r
P

e
rf

 (
X

)

Slope = ~0.5

Performance ~ Sqrt(Area)

Single-core processor performance follows the square root of area.

It takes 4× the transistors to give 2× the performance.

Fred J. Pollack, MICRO 1999 keynote. Graph from Borkar, DAC 2007

Dally: Calculation is Cheap; Communication is Costly

64b FPU

0.1mm2

50pJ /op
1.5GHz

64b 1mm

Channel
25pJ /word

64b Off-Chip

Channel
1nJ /word

64bFloatingPoint

20mm

10
m

m
 2

50
pJ

, 4
 c

yc
le

s

“Chips are power limited
and most power is spent
moving data

Performance = Parallelism

Efficiency = Locality

Bill Dally’s 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance and Locality for Efficiency

Dally: “Single-thread processors are in
denial about these two facts”

We need
different programming paradigms
and
different architectures
on which to run them.

Massive On-Chip Parallelism is Here

NVIDIA GeForce GTX-400/GF100/Fermi:
3 billion transistors, 512 CUDA cores, 16 geometry units, 64 texture
units, 48 render output units, 384-bit GDDR5

The Future is Wires and Memory

A Modern High-End FPGA: Altera’s Stratix V

2500 dual-ported 2.5KB 600 MHz memory blocks; 6 Mb total

350 36-bit 500 MHz DSP blocks (MAC-oriented datapaths)

300000 6-input LUTs; 28 nm feature size

What We are Doing About It

C et al.

x86 et al.

gcc et al.

ab
st

ra
ct

io
n

time
today

Future Languages Higher-level languages

Future ISAs

More hardware reality

A Functional IR

FPGAs

What We are Doing About It

C et al.

x86 et al.

gcc et al.

ab
st

ra
ct

io
n

time
today

Future Languages Higher-level languages

Future ISAs

More hardware reality

A Functional IR

FPGAs

What We are Doing About It

C et al.

x86 et al.

gcc et al.

ab
st

ra
ct

io
n

time
today

Future Languages Higher-level languages

Future ISAs

More hardware reality

A Functional IR

FPGAs

Why Functional Specifications?

Ï Referential transparency/side-effect
freedom make formal reasoning about
programs vastly easier

Ï Inherently concurrent and race-free
(Thank Church and Rosser). If you
want races and deadlocks, you need to
add constructs.

Ï Immutable data structures makes it
vastly easier to reason about memory
in the presence of concurrency

Why FPGAs?

Ï We do not know the structure of future
memory systems
Homogeneous/Heterogeneous?
Levels of Hierarchy?
Communication Mechanisms?

Ï We do not know the architecture of
future multi-cores
Programmable in Assembly/C?
Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but
representative of the long-term solution.

The Practical Question

How do we synthesize hardware
from pure functional languages

for FPGAs?

Control and datapath are easy; the memory system is interesting.

To Implement Real Algorithms in Hardware, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

type ::= Type Named type/primitive
| Constr Type∗ | · · · | Constr Type∗ Tagged union

Subsume C structs, unions, and enums

Comparable power to C++ objects with virtual methods

“Algebraic” because they are sum-of-product types.

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

type ::= Type Named type/primitive
| Constr Type∗ | · · · | Constr Type∗ Tagged union

Examples:

data Intlist = Nil −− Linked list of integers
| Cons Int Intlist

data Bintree = Leaf Int −− Binary tree w/ integer leaves
| Branch BinTree Bintree

data Expr = Literal Int −− Arithmetic expression
| Var String
| Binop Expr Op Expr

data Op = Add | Sub | Mult | Div

Representing Recursive Algebraic Data Types

Consider a list of integers:

data Intlist = Nil
| Cons Int Intlist

An obvious representation:

0 Nil

1 Integer Pointer Cons Int Intlist

Ï Usual byte-alignment unnecessary & wasteful in hardware

Ï Naturally stored & managed in a custom integer-list memory

Ï Width of pointer can depend on integer-list memory size

Syntax-Directed Translation of Expressions to Hardware

go ready

resultinputs

Combinational functions:

go

inputs

ready

result

Sequential functions:

clk

go

inputs

ready

result

Translating Let and Case

e1

en e

go

ready
result

Let makes all new variables available to its body.

go

v

e1

en

ready
result

Case invokes one of its sub-expressions, then synchronizes.

Removing Recursion: Recursive Fibonacci Example

fib 1 = 1 −− Base case
fib 2 = 1 −− Base case
fib n = fib (n−1) + fib (n−2) −− Recurse twice and sum results

Transform to Continuation-Passing Style

fib ′ 1 k = k 1 −− Base case
fib ′ 2 k = k 1 −− Base case
fib ′ n k = fib ′ (n−1) −− First recursive call

(λn1 →fib ′ (n−2) −− Second recursive call
(λn2 →k (n1 + n2))) −− Sum results

fib n = fib ′ n (λx → x)

Name intermediate results (e.g., call to fib ′ (n−1)). Pass them as
arguments to λ terms.

Well-known technique; e.g., Appel et al.; SML/NJ compiler.

Name Lamba Terms; Capture Free Variables

call 1 k = k 1 −− Base case (return)
call 2 k = k 1 −− Base case (return)
call n k = call (n−1) (c1 n k) −− First recursive call (call)
c1 n k n1 = call (n−2) (c2 n1 k) −− Second recursive call (call)
c2 n1 k n2 = k (n1 + n2) −− Sum Results (return)
c3 x = x −− Return final result

fib n = call n c3

Each lambda term becomes its own function.

Represent Continuations with a Type; Merge Functions

fib ′ (Call 1 k) = fib ′ (Cont k 1)
fib ′ (Call 2 k) = fib ′ (Cont k 1)
fib ′ (Call n k) = fib ′ (Call (n−1) (C1 n k))
fib ′ (Cont (C1 n k) n1) = fib ′ (Call (n−2) (C2 n1 k))
fib ′ (Cont (C2 n1 k) n2) = fib ′ (Cont k (n1 + n2))
fib ′ (Cont (C3) x) = x

fib n = fib ′ (Call n C3)

data Continuation = C1 Word8 Continuation
| C2 Word32 Continuation
| C3

data Call = Call Word8 Continuation
| Cont Continuation Word32

Replace Type Recursion with Pointers

Before:

data Continuation = C1 Word8 Continuation
| C2 Word32 Continuation
| C3

After:

type ContPtr = Word8 −− Pointer to a Continuation object

type ContRef = (ContPtr, ContMem)

data Continuation = C1 Word8 ContRef
| C2 Word32 ContRef
| C3

An Explicit “Store” Function

type ContMem = Array ContPtr ContBits −− Model of memory

data ContBits = CB1 Word8 −− No need for “next” pointer
| CB2 Word32 −− since these are on a stack
| CB3

store :: Continuation →ContRef
store c = let (p, m, c′) = case c of

C1 n (p, m) → (p, m, CB1 n)
C2 n1 (p, m) → (p, m, CB2 n1)
C3 → (0, emptyMem, CB3) in

let p′ = p + 1 in −− Place in next memory location
(p′ , m // [(p′ , c′)]) −− Write memory

Store is more like a constructor: data in; address out.

An Explicit “Load” Function

load :: ContRef →Continuation
load (p, m) = let p′ = p − 1 in −− Successor just below us

loadp (p′, m, m ! p) −− Read memory

loadp :: (ContPtr, ContMem, ContBits) →Continuation
loadp (p′, m, d) = case d of

CB1 n → C1 n (p′ , m) −− Reconstruct
CB2 n1 →C2 n1 (p′, m)
CB3 → C3

Broken into two functions to model synchronous RAM:

Load runs before the clock edge (prepare address)

Loadp runs after the clock edge (handle returned data)

Version Suitable for Hardware Translation

fibp (Call 1 kr) = fibp (Cont (load kr) 1)
fibp (Call 2 kr) = fibp (Cont (load kr) 1)
fibp (Call n kr) = fibp (Call (n−1) (store (C1 n kr)))
fibp (Cont (C1 n kr) n1) = fibp (Call (n−2) (store (C2 n1 kr)))
fibp (Cont (C2 n1 kr) n2) = fibp (Cont (load kr) (n1 + n2))
fibp (Cont (C3) x) = x

fib n = fibp (Call n (store C3))

Block Diagram

fib

fibp

load

store

stack

loadp
do

we
di
a

result

n

Concrete Representation of Types

7 0
Word8

31 0
Word32

7 0
ContRef

Concrete Representation of Types

C1nkr
029333441

C2n1kr Continuation

C3

CB1n
02933

CB2n1 ContBits

CB3

Concrete Representation of Types

nkr Call
0183233404182

Call
Contn1/n2Continuation

C1nkr
414350747582

C2n1kr

C3

Duplication for Performance

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

After duplicating functions:

fib 0 = 0
fib 1 = 1
fib n = fib ′ (n−1) + fib′ ′ (n−2)

fib ′ 0 = 0
fib ′ 1 = 1
fib ′ n = fib ′ (n−1) + fib′ (n−2)

fib ′ ′ 0 = 0
fib ′ ′ 1 = 1
fib ′ ′ n = fib ′ ′ (n−1) + fib′ ′ (n−2)

Here, fib’ and fib” may run in
parallel.

Duplication for Performance

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

After duplicating functions:

fib 0 = 0
fib 1 = 1
fib n = fib ′ (n−1) + fib′ ′ (n−2)

fib ′ 0 = 0
fib ′ 1 = 1
fib ′ n = fib ′ (n−1) + fib′ (n−2)

fib ′ ′ 0 = 0
fib ′ ′ 1 = 1
fib ′ ′ n = fib ′ ′ (n−1) + fib′ ′ (n−2)

Here, fib’ and fib” may run in
parallel.

Unrolling Recursive Data Structures

Like a “blocking factor,” but more general. Idea is to create larger
memory blocks that can be operated on in parallel.

Original Huffman tree type:

data Htree = Branch Htree HTree | Leaf Char

Unrolled Huffman tree type:

data Htree = Branch Htree′ HTree′ | Leaf Char
data Htree′ = Branch′ Htree′′ HTree′′ | Leaf′ Char
data Htree′′ = Branch′′ Htree HTree | Leaf′′ Char

Recursive instances must be pointers; others can be explicit.

Functions must be similarly modified to work with the new types.

Identifying Stacks

let xs = [1,2,3] in
let ys = 0:xs in
let zs = −1:ys in
ys

let xs = [1,2,3] in
let ys = 0:xs in
let zs = −1:xs in
ys

One of these has a list that behaves like a stack; the other does not.

Hint:

zs ys xs

−1 0 1 2 3

ys xs

0 1 2 3

zs −1

Identifying Stacks

let xs = [1,2,3] in
let ys = 0:xs in
let zs = −1:ys in
ys

let xs = [1,2,3] in
let ys = 0:xs in
let zs = −1:xs in
ys

One of these has a list that behaves like a stack; the other does not.
Hint:

zs ys xs

−1 0 1 2 3

ys xs

0 1 2 3

zs −1

Speculation

Harnessing
Recursion

Compiling with
Abstract

Datatypes

Optimization
Configurable,

Distributed
Memories

Type-Specific
Optimizations

FPGAs-4-Kids
Outreach

Year 1 Year 2 Year 3 Year 4
Speculation as a

parallelizing
optimization

Applying speculation to
divide-and-conquer algorithms

Stack data types and
optimizations

Distributing the stack

Sizing, sharing, and
backing the stackImplementing recursion

in hardware

Statically unrolling recursion to
improve parallelism

Statically unrolling data
structures for locality

Implementing high-level
data types in hardware

Working with
type-specific accelerators

Implementing immutable datatypes with
garbage collection

Sizing
type-specific

memories

Dennis’s immutable heap

Splitting and combining
type-specific memories

Duplicating data to
improve locality

Support for Streaming
Types Synchronous Dataflow

Support
Pipelining Groups of
Recursive Functions

Basic GUI Programming
Environment

Synthesis and
Downloading Flow

Classroom Testing

