
Functioning Hardware
from

Functional Specifications

Stephen A. Edwards

Columbia University

Chalmers, Göteborg, Sweden, December 17, 2013

(λx.?) f = FPGA

Where’s my 10 GHz processor?

From Sutter, The Free Lunch is Over, DDJ 2005

Dally: Calculation is Cheap; Communication is Costly

64b FPU

0.1mm2

50pJ /op
1.5GHz

64b 1mm

Channel
25pJ /word

64b Off-Chip

Channel
1nJ /word

64bFloatingPoint

20mm

10
m

m
 2

50
pJ

, 4
 c

yc
le

s

“Chips are power limited
and most power is spent
moving data

Performance = Parallelism

Efficiency = Locality

Bill Dally’s 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance and Locality for Efficiency

Dally: “Single-thread processors are in
denial about these two facts”

We need
different programming paradigms
and
different architectures
on which to run them.

Massive On-Chip Parallelism is Here

NVIDIA GeForce GTX-400/GF100/Fermi:
3 billion transistors, 512 CUDA cores, 16 geometry units, 64 texture
units, 48 render output units, 384-bit GDDR5

The Future is Wires and Memory

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

Functional Programs to FPGAs

A Little More Detail

C et al.

x86 et al.

gcc et al.

ab
st

ra
ct

io
n

time
today

Future Languages Higher-level languages

Future ISAs

More hardware reality

A Functional IR

FPGAs

A Little More Detail

C et al.

x86 et al.

gcc et al.

ab
st

ra
ct

io
n

time
today

Future Languages Higher-level languages

Future ISAs

More hardware reality

A Functional IR

FPGAs

A Little More Detail

C et al.

x86 et al.

gcc et al.

ab
st

ra
ct

io
n

time
today

Future Languages Higher-level languages

Future ISAs

More hardware reality

A Functional IR

FPGAs

Why Functional Specifications?

Ï Referential transparency/side-effect
freedom make formal reasoning about
programs vastly easier

Ï Inherently concurrent and race-free
(Thank Church and Rosser). If you
want races and deadlocks, you need to
add constructs.

Ï Immutable data structures makes it
vastly easier to reason about memory
in the presence of concurrency

Why FPGAs?

Ï We do not know the structure of future
memory systems
Homogeneous/Heterogeneous?
Levels of Hierarchy?
Communication Mechanisms?

Ï We do not know the architecture of
future multi-cores
Programmable in Assembly/C?
Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but
representative of the long-term solution.

A Recent High-End FPGA: Altera’s Stratix V

2500 dual-ported 2.5KB 600 MHz memory blocks; 6 Mb total

350 36-bit 500 MHz DSP blocks (MAC-oriented datapaths)

300000 6-input LUTs; 28 nm feature size

The Practical Question

How do we synthesize hardware
from pure functional languages

for FPGAs?

Control and datapath are easy; the memory system is interesting.

To Implement Real Algorithms in Hardware, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

type ::= Type Named type/primitive
| Constr Type∗ | · · · | Constr Type∗ Tagged union

Subsume C structs, unions, and enums

Comparable power to C++ objects with virtual methods

“Algebraic” because they are sum-of-product types.

The Type System: Algebraic Data Types

Types are primitive (Boolean, Integer, etc.) or other ADTs:

type ::= Type Named type/primitive
| Constr Type∗ | · · · | Constr Type∗ Tagged union

Examples:

data Intlist = Nil −− Linked list of integers
| Cons Int Intlist

data Bintree = Leaf Int −− Binary tree w/ integer leaves
| Branch Bintree Bintree

data Expr = Literal Int −− Arithmetic expression
| Var String
| Binop Expr Op Expr

data Op = Add | Sub | Mult | Div

Algebraic Datatypes in Hardware: Lists

data IntList = Cons Int IntList
| Nil

01323348
1 Consintpointer

0 Nil

Datatypes in Hardware: Binary Trees

data IntTree = Branch IntTree IntTree
| Leaf Int

01161732
0 Branchpointerpointer

1 Leafint

High-Level Synthesis in a Functional Setting

diffeq a dx x u y =
if x < a then

diffeq a dx (x + dx) (u − 5*x*u*dx − 3*y*dx) (y + u*dx)
else y

a

dx

+

x

<
done

u

−
×

×
3

−
×

×
×

5 y

+
×

result

Scheduling

×u dx
×5 x+x dx

x

<x a

c× ×3 y

×
dx

×u dx − u

+
y

y

−
u

Cycle 1

Cycle 2

Cycle 3

Cycle 4

dpath m1 m2 m3 m4 a1 a2 s1 s2 c1 c2 k =
k (m1 * m2) (m3 * m4) (a1 + a2) (s1 − s2) (c1 < c2)

diffeq a dx x u y =
dpath u dx 5 x x dx 0 0 x a (λpa pb x _ c → if not c then y else
dpath pa pb 3 y 0 0 0 0 0 0 (λpa pb _ _ _ →
dpath u dx dx pb 0 0 u pa 0 0 (λpa pb _ d _ →
dpath 0 0 0 0 y pa d pb 0 0 (λ_ _ s d _ → diffeq a dx x d s))))

Scheduling

×u dx
×5 x+x dx

x

<x a

c× ×3 y

×
dx

×u dx − u

+
y

y

−
u

Cycle 1

Cycle 2

Cycle 3

Cycle 4

dpath m1 m2 m3 m4 a1 a2 s1 s2 c1 c2 k =
k (m1 * m2) (m3 * m4) (a1 + a2) (s1 − s2) (c1 < c2)

diffeq a dx x u y =
dpath u dx 5 x x dx 0 0 x a (λpa pb x _ c → if not c then y else
dpath pa pb 3 y 0 0 0 0 0 0 (λpa pb _ _ _ →
dpath u dx dx pb 0 0 u pa 0 0 (λpa pb _ d _ →
dpath 0 0 0 0 y pa d pb 0 0 (λ_ _ s d _ → diffeq a dx x d s))))

Scheduling

×u dx
×5 x+x dx

x

<x a

c× ×3 y

×
dx

×u dx − u

+
y

y

−
u

Cycle 1

Cycle 2

Cycle 3

Cycle 4

dpath m1 m2 m3 m4 a1 a2 s1 s2 c1 c2 k =
k (m1 * m2) (m3 * m4) (a1 + a2) (s1 − s2) (c1 < c2)

diffeq a dx x u y =
dpath u dx 5 x x dx 0 0 x a (λpa pb x _ c → if not c then y else
dpath pa pb 3 y 0 0 0 0 0 0 (λpa pb _ _ _ →
dpath u dx dx pb 0 0 u pa 0 0 (λpa pb _ d _ →
dpath 0 0 0 0 y pa d pb 0 0 (λ_ _ s d _ → diffeq a dx x d s))))

diffeq a dx x u y =
dpath u dx 5 x x dx 0 0 x a (λpa pb x _ c → if not c then y else
dpath pa pb 3 y 0 0 0 0 0 0 (λpa pb _ _ _ →
dpath u dx dx pb 0 0 u pa 0 0 (λpa pb _ d _ →
dpath 0 0 0 0 y pa d pb 0 0 (λ_ _ s d _ → diffeq a dx x d s))))

k0 a dx x _ _ s d _ =
dpath d dx 5 x x dx 0 0 x a (k1 a dx d s)

k1 a dx u y pa pb s _ c =
if not c then y else
dpath pa pb 3 y 0 0 0 0 0 0 (k2 a dx s u y)

k2 a dx x u y pa pb _ _ _ =
dpath u dx dx pb 0 0 u pa 0 0 (k3 a dx x y)

k3 a dx x y pa pb _ d _ =
dpath 0 0 0 0 y pa d pb 0 0 (k0 a dx x)

diffeq a dx x u y = k0 a dx x 0 0 y u False

data Cont = K0 Int Int Int
| K1 Int Int Int Int
| K2 Int Int Int Int Int
| K3 Int Int Int Int

dpath m1 m2 m3 m4 a1 a2 s1 s2 c1 c2 k =
kk k (m1 * m2) (m3 * m4) (a1 + a2) (s1 − s2) (c1 < c2)

kk k m1 m2 a s c = case (k, m1, m2, a, s, c) of
(K0 a dx x ,_ ,_ ,s,d,_) →

dpath d dx 5 x x dx 0 0 x a (K1 a dx d s)
(K1 a dx u y,pa,pb,s,_,c) → if not c then y else

dpath pa pb 3 y 0 0 0 0 0 0 (K2 a dx s u y)
(K2 a dx x u y,pa,pb,_,_,_) →

dpath u dx dx pb 0 0 u pa 0 0 (K3 a dx x y)
(K3 a dx x y,pa,pb,_,d,_) →

dpath 0 0 0 0 y pa d pb 0 0 (K0 a dx x)

diffeq a dx x u y = kk (K0 a dx x) 0 0 y u False

In Hardware

m1 m2

×

m3 m4

×

a1 a2

+

s1 s2

−

c1 c2

<

a dx x u y

Removing Recursion: The Fib Example

fib n = case n of
1 → 1
2 → 1
n → fib (n−1) + fib (n−2)

Transform to Continuation-Passing Style

fibk n k = case n of
1 → k 1
2 → k 1
n → fibk (n−1) (λn1 →

fibk (n−2) (λn2 →
k (n1 + n2)))

fib n = fibk n (λx → x)

Lambda Lifting

fibk n k = case n of
1 → k 1
2 → k 1
n → fibk (n−1) (k1 n k)

k1 n k n1 = fibk (n−2) (k2 n1 k)
k2 n1 k n2 = k (n1 + n2)
k0 x = x
fib n = fibk n k0

Representing Continuations with a Type

data Cont = K0 | K1 Int Cont | K2 Int Cont

fibk n k = case (n,k) of
(1, k) → kk k 1
(2, k) → kk k 1
(n, k) → fibk (n−1) (K1 n k)

kk k a = case (k, a) of
((K1 n k), n1) → fibk (n−2) (K2 n1 k)
((K2 n1 k), n2) → kk k (n1 + n2)
(K0, x) → x

fib n = fibk n K0

Merging Functions

data Cont = K0 | K1 Int Cont | K2 Int Cont
data Call = Fibk Int Cont | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK k 1)
(Fibk 2 k) → fibk (KK k 1)
(Fibk n k) → fibk (Fibk (n−1) (K1 n k))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (K2 n1 k))
(KK (K2 n1 k) n2) →fibk (KK k (n1 + n2))
(KK K0 x) → x

fib n = fibk (Fibk n K0)

Adding Explicit Memory Operations

load :: CRef →Cont
store :: Cont →CRef
data Cont = K0 | K1 Int CRef | K2 Int CRef
data Call = Fibk Int CRef | KK Cont Int

fibk z = case z of
(Fibk 1 k) → fibk (KK (load k) 1)
(Fibk 2 k) → fibk (KK (load k) 1)
(Fibk n k) → fibk (Fibk (n−1) (store (K1 n k)))

(KK (K1 n k) n1) → fibk (Fibk (n−2) (store (K2 n1 k)))
(KK (K2 n1 k) n2) →fibk (KK (load k) (n1 + n2))
(KK K0 x) → x

fib n = fibk (Fibk n (store K0))

fib

fibk

load

store

mem

load′

Call

do

we
di
a

CRef

CRef

Cont

result

n

Cont

Duplication for Performance

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

After duplicating functions:

fib 0 = 0
fib 1 = 1
fib n = fib ′ (n−1) + fib′ ′ (n−2)

fib ′ 0 = 0
fib ′ 1 = 1
fib ′ n = fib ′ (n−1) + fib′ (n−2)

fib ′ ′ 0 = 0
fib ′ ′ 1 = 1
fib ′ ′ n = fib ′ ′ (n−1) + fib′ ′ (n−2)

Here, fib’ and fib” may run in parallel.

Duplication for Performance

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

After duplicating functions:

fib 0 = 0
fib 1 = 1
fib n = fib ′ (n−1) + fib′ ′ (n−2)

fib ′ 0 = 0
fib ′ 1 = 1
fib ′ n = fib ′ (n−1) + fib′ (n−2)

fib ′ ′ 0 = 0
fib ′ ′ 1 = 1
fib ′ ′ n = fib ′ ′ (n−1) + fib′ ′ (n−2)

Here, fib’ and fib” may run in parallel.

Unrolling Recursive Data Structures

Original Huffman tree type:

data Htree = Branch Htree HTree | Leaf Char

Unrolled Huffman tree type:

data Htree = Branch Htree′ HTree′ | Leaf Char
data Htree′ = Branch′ Htree′′ HTree′′ | Leaf′ Char
data Htree′′ = Branch′′ Htree HTree | Leaf′′ Char

Speculation

Harnessing
Recursion

Compiling with
Abstract

Datatypes

Optimization
Configurable,

Distributed
Memories

Type-Specific
Optimizations

FPGAs-4-Kids
Outreach

Year 1 Year 2 Year 3 Year 4
Speculation as a

parallelizing
optimization

Applying speculation to
divide-and-conquer algorithms

Stack data types and
optimizations

Distributing the stack

Sizing, sharing, and
backing the stackImplementing recursion

in hardware

Statically unrolling recursion to
improve parallelism

Statically unrolling data
structures for locality

Implementing high-level
data types in hardware

Working with
type-specific accelerators

Implementing immutable datatypes with
garbage collection

Sizing
type-specific

memories

Dennis’s immutable heap

Splitting and combining
type-specific memories

Duplicating data to
improve locality

Support for Streaming
Types Synchronous Dataflow

Support
Pipelining Groups of
Recursive Functions

Basic GUI Programming
Environment

Synthesis and
Downloading Flow

Classroom Testing

