High-Level Languages
for
Device Drivers

Stephen A. Edwards

Columbia University

Intel, Hillsboro, Oregon, March 16, 2012

Between a Rock and a Hard Place

Between a Rock and a Hard Place

Operating B Device

System Driver | Hardware

A Major Source of Bugs

Rate of Errors compared to Other Directories

7 T T T T T T
Block =
6 Free =
st s
“These graphs show that . ab Lok
driver code is the most 2 3 Rl
buggy, both in terms of f: %
absolute number of bugs N T 1
(as we W0u|d Suspect other arch/i386 net fs drivers
. . . Figure 4: This graph shows drivers have an error
from its S|Ze) and N rate up to 7 times higher than the rest of the ker-
” nel. The arch/i386 directory h high error rate for
te rms Of error rate- tl?e Nulle checker becauszc\sesgoua:daB i(igenéca(i erjojs ?n

arch/i386, and arch/i386 has relatively few notes.
Chou et al. [SOSP 2001] _ _

Fault with highest rate: “release

acquired locks, do not

double-acquire locks”

Drivers Run in Kernel Mode...Unfortunately

a problem has
to your
The problem seems to be caused by the following f4le: ma_disp

he first time ‘ve seen this Stop error screen
,::,:'.':: ;;: computer. If s screen appears again, follow

these STEpS:

pbeen detected and windows has been shut down to Prevent damage
er.

ca driver stuck 1n an infinite loop. This usually indicates
The f:"‘mm device IEself or with the device driver p'n;‘—'lnq the
mun rectly.

Please f with your hardware device vendor for any driver updates.
Technic - information:

e sToP: OwO00G00EA (OxBALGSDSE, OxSBOALFE0, OxFTBCICEC, Ox00000001)
:“‘d’:‘:r‘ﬂ dump of physical memory

Physical lete

complete.
Contact your system administrator or technical support group for further
assistance.

10s of OSes; Tens of Thousands of Devices

VxWorks MeeGo B

My Linux distribution recognizes 12000 USB devices
and 16000 PCI devices

OS Protocols Complex: WIinHEC “Hello World”

#include "stddcls.h"
#include "driver.h"
#include "version.h"

DFWSTATUS EvtDriverDeviceAdd(DFWDRIVER hDriver, DFWDEVICE hDevice);
VOID EvtDriverUnioad(DFWDRIVER hDriver);

#pragma PAGEDCODE
extern "C" NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
{

PAGED_CODE();

DfwTraceDbgPrint(DRIVERNAME "_~_Version_%d.%2.2d.%3.3

DFW_DRIVER_CONFIG config = {sizeof(DFW_DRIVER_CONFIG)};

config.DeviceExtensionSize = 0;

config.RequestContextSize
i EvtDriverD

%s_%s\n", VERMAJOR, VERMINOR, BUILD, _DATE__, _TIME_);

eAdd = EvtDriverDeviceAdd;
config.Events.EvtDrit = EvtDri
config.DriverinitFlags = 0;
config.LockingConfig = DfwLockingDevice;
config. ThreadingConfig = DfwThreadingAsynchronous;
config.SynchronizationConfig = DfwSy, ic
DFWDRIVER Driver;
DFWSTATUS status = DfwDriverCreate(DriverObject, RegistryPath, NULL, &config, &Driver);
if (\NT_SUCCESS(status))

DfwTraceError(DRIVERNAME "_—_DfwDriverCreate_failed_—_%X\n", status);
return status;

#pragma LOCKEDCODE
DFWSTATUS EvtDriverDeviceAdd(DFWDRIVER hDriver, DFWDEVICE hDevice)
{

DfwTraceDbgPrint(DRIVERNAME "
DFWSTATUS status;
status = DfwDevicelnitialize(hDevice);
if (INT_SUCCESS(status)) {
DfwTraceError(DRIVERNAME "_—_DfwDevicelnitialize_failed_—_%X\n", status);
return status;

EvtDriverDeviceAdd_entered_—_IRQL_is_%d\n", KeGetCurrentirgl());

}

DFW_FDO_EVENT_CALLBACKS callbacks;

DFW_FDO_EVENT_CALLBACKS_INIT(&callbacks);

status = DfwDeviceRegisterFdoCallbacks(hDevice, &callbacks);

if (INT_SUCCESS(status)) {
DfwTraceErrorf "_—_DfwDevi g allbacks_failed_~_%X\n", status);
return status;

}
return status;
}
#pragma PAGEDCODE
VOID EvtDriverUnload(DFWDRIVER Driver)

{
PAGED_CODE();
DfwTraceDbgPrint(DRIVERNAME "_~_Unloading_driver_—_IRQL_is_%d\n", KeGetCurrentlrgl());

Hardware Interfaces are Complex

suB
REGISTER FUNCTION ADDR. D7 D6 D5 D4 D3 D2 D1 Do
(HEX)
Chip version: register 00H
Chip version (read only) ‘ 00 ‘ D07 D06 D05 D04
Video decoder: registers 01H to 2FH
FRONT-END PART: REGISTERS 01H 70 05H
Horizontal increment delay o1 n o o " IDEL3 IDEL2 IDEL1 IDELO
Analog input control 1 02 FUSE1 FUSEO GUDL1 GUDLO MODE3 MODE2 MODE1 MODEO
Analog input control 2 03 M HLNRS VBSL WPOFF HOLDG GAFIX GAI28 GAI18
Analog input control 3 04 GAI17 GAI16 GAI15 GAl14 GAI13 GAI12 GAI11 GAI10
Analog input control 4 05 GAI27 GAI26 GAI25 GAI24 GAI23 GAI22 GAI21 GAI20
DECODER PART: REGISTERS 06H TO 2FH
Horizontal sync start 06 HSB7 HSBé HSB5 HSB4 HSB3 HSB2 HSB1 HSBO
Horizontal sync stop 07 HSS7 HSSé HSS5 HSS4 HSS3 HSs2 HSS1 HSS0
Sync control 08 AUFD FSEL FOET HTC1 HTCO HPLL VNOI1 VNOIO
Luminance control 09 BYPS YCOMB LDEL LUBW LUFI3 LUFI2 LUFI1 LUFIO
Luminance brightness control 0A DBRI7 DBRI6 DBRIS DBRI4 DBRI3 DBRI2 DBRI1 DBRIO
Luminance contrast control 0B DCON7 DCON6 DCONS5 DCON4 DCON3 DCON2 DCONT1 DCONO
Chrominance saturation control 0C DSAT7 DSAT6 DSAT5 DSAT4 DSAT3 DSAT2 DSAT1 DSATO
Chrominance hue control 0D HUEC?7 HUEC6 HUECS HUEC4 HUEC3 HUEC2 HUEC1 HUECO
Chrominance control 1 0E CDTO CSTD2 CSTD1 CSTDO DCVF FCTC o CCOomMB
Chrominance gain control OF ACGC CGAING CGAINS CGAIN4 CGAIN3 CGAIN2 CGAIN1 CGAINO
Chrominance control 2 10 OFFU1 OFFU0 OFFV1 OFFV0 CHBW LCBW2 LCBW1 LCBWO
Mode/delay control " COoLO RTP1 HDEL1 HDELO RTPO YDEL2 YDEL1 YDELO
RT signal control 12 RTSE13 RTSE12 RTSE11 RTSE10 RTSE03 RTSE02 RTSEO1 RTSE00
RT/X-port output control 13 RTCE XRHS XRVS1 XRVS0 HLSEL OFTS2 OFTS1 QOFTS0
Analog/ADC/compatibility 14 CM99 UPTCV AOSL1 AOSLO XTOUTE OLDSB APCK1 APCKO
control
VGATE start, FID change 15 VSTA7 VSTA6 VSTA5 VSTA4 VSTA3 VSTA2 VSTA1 VSTAQ
VGATE stop 16 VSTO7 VSTO6 VSTOS VSTO4 VSTO3 VSTO2 VSTO1 VSTO0
Miscellaneous/VGATE MSBs 17 LLCE LLC2E) n) VGPS VSTO8 VSTA8

Philips SAA7114H Video Decoder Registers (Page 1 of 7)

“Because of the complexity of driver programming, we
tend, as an industry, to end up with lots of poorly
implemented drivers and with confused, disgruntled
users. We also don’t fulfill our potential for hardware
innovation, because hardware manufacturers are easily
stymied by the cost and delay associated with driver
development.”

—Walter Oney

'd

MIWIINDOWS
DI MODEL

http://www.wd-3.com/archive/Frameworkintro.htm

Who Writes These Things?

Author Knows the Knows the
Hardware OS Interface
OS Developer No Yes
(a software person)
Hardware Yes No
Manufacturer (a hardware person)
Third Party No No

(it's undocumented)

(too complex)

Wish List

» Model of hardware
interface/behavior

» Model for OS interface

» Ways to statically check both
models against driver code

» Way to dynamically verify AN
hardware model faithful to real PES
hardware

» Language support for concurrency
and events (interrupts)

We Need a Domain-Specific Language for
Device Drivers

Preventing (unwanted) be

p 7
#

havior the main objective
e I

Libraries add functionality but can’t enforce rules.

A Model of the Hardware

What can it do and how do you ask for it?

RT-level models far too detailed, proprietary, and
provide no insight.

Instead, a model of user-visible states and actions.

Validating the Hardware Model

Driver developer writes model; must validate against
real hardware.

Formal comparison with RTL unrealistic (business &
technical); need to validate it independently.

Two ideas:

1. Dynamic validation: maintain model state and
check against hardware state as driver runs.
Requires test cases.

2. Static validation: “model-check” actual hardware
against the model. No test cases but may require
guidance.

A Model of the Operating System

OS developer may write the model (far fewer OSes than
devices)

Formal comparison with OS code probably unrealistic

Again, two ideas:

1. Dynamic validation: check each OS/driver
interaction for compliance with the model

2. Static validation: “model-check” the OS model
against the OS itself. Use a “model checking” driver
that can supply all sorts of different stimulus to the
OS.

Static and Dynamic Checks

Want to be able to check driver behavior for compliance
against both models.

Again, combination of static and dynamic approaches
viable.

Language semantics need to help as much as possible.

NDL

A first attempt:

Christopher L. Conway and Stephen A. Edwards.

NDL: A Domain-Specific Language for Device Drivers.
In Proceedings of the ACM Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES),
Washington, DC, June, 2004.

NDL

NDL for starting a DMA transfer:

start = true;
dmaState = DISABLED;
remoteDmaByteCount = count;

The equivalent C:

outb(E8390 NODMA + E8390 PAGEO + E8390 START,
nic_base + NE_CMD);

outb(count & 0xff, nic_base + ENO_RCNTLO);
outb(count >> 8, nic_ base + ENO_RCNTHI);

NDL

Doing a DMA transfer:

remoteByteCount = count;
remoteStartAddr = start_page x FRAME_LEN;

trans DMA_WRITING; // Transition to state

dataport =<16> buffer; // Write data to buffer

wait 20ms for remoteDmalrq else {
print("ne2k:_Timeout_waiting_for_Tx_RDC.");

soft_reset();
start_dev();

}

remoteDmalrq=ACK;

Device Registers

» Device interface typically a block of
memory-mapped I/O locations

» NDL provides a structured view of these

v

Fields laid out sequentially; no implicit padding
» Compiler generates shifts, masks

Offset and range assertions checked for sanity
Fields can be as small as 1 bit

Support for predicated registers (only visible in
certain states)

v

\4

v

» Device registers appear like variables in NDL code

Device Registers for NE2000 Compatibles

ioports {
command = {
0: stop : trigger except 0,
1: start : trigger except O,
2: transmit : trigger except 0,
3..5:
dmaState : {
READING = #001
WRITING = #010
SENDING = #011
DISABLED = #1xx
} volatile,
6..7:
registerPage : int{0..2}
I

0x01..0x0f:

[
(PAGE(0)) => { /+ predicated regs. /
write rxStartAddr,
write rxStopAddr,
boundaryPtr,
[
read txStatus = { /= overlay reg. =/
0: packetTransmitted,
1:
2: transmitCollided,
3: transmitAborted,
4: carrierLost,

5: fifoUnderrun,
6: heartbeatLost,
7: lateCollision

} volatile

Il
write txStartAddr

’

[+ ... eleven bytes elided ... %/

}

Il
(PAGE(1)) => { /= predicated regs. */
physicalAddr : byte[6],
currentPage : byte,
multicastAddr : byte[8]

Il
(PAGE(2)) => { /* predicated regs. =/
_: byte[13],
read dataConfig,
read interruptMask
}
1

0x10: dataport : fifo[1] trigger,
_: byte[14],

Ox1f: reset : byte trigger

}

States

state DMA DISABLED {
dmaState = DISABLED;

}

I
DMA READING {
goto STARTED;

goto DMA DISABLED; }
stop = true;

I
|} DMA_WRITING {

STARTED { start = true; } o R G

}

state PAGE(i : int{0..2}) {
registerPage = i;

Interrupt Functions

@ indicates the interrupt condition that triggers this
function

critical function @(countersirqg) {
rxFrameErrors += frameAlignErrors;
rxCrcErrors += crcErrors;
rxMissedErrors += packetErrors;
countersirq = ACK;

}

