Compiling Parallel Algorithms to Memory Systems

Stephen A. Edwards

Columbia University

ENS DI Group, June 26th, 2012

$$
(\lambda x . ?) f=\text { FPGA }
$$

Functional Programs to FPGAs

$\boldsymbol{\lambda} f .(\boldsymbol{\lambda} x .(f(x x)) \boldsymbol{\lambda} x .(f(x x)))$

Functional Programs to FPGAs

Moore's Law: Lots of Cheap Transistors...

"The complexity for minimum component costs has increased at a rate of roughly a factor of two per year."

Closer to every 24 months

Gordon Moore, Cramming More Components onto Integrated Circuits, Electronics, 38(8) April 19, 1965.

Pollack's Rule: ...Give Diminishing Returns for Processors

Single-core processor performance follows the square root of area.
It takes $4 \times$ the transistors to give $2 \times$ the performance.

Fred J. Pollack, MICRO 1999 keynote. Graph from Borkar, DAC 2007

Dally: Calculation is Cheap; Communication is Costly

"Chips are power limited and most power is spent moving data

Performance $=$ Parallelism
Efficiency = Locality

Bill Dally's 2009 DAC Keynote, The End of Denial Architecture

Parallelism for Performance and Locality for Efficiency

Dally: "Single-thread processors are in denial about these two facts"

We need
different programming paradigms and
different architectures
on which to run them.

Bacon et al.'s Liquid Metal

Fig. 2. Block level diagram of DES and Lime code snippet
JITting Lime (Java-like, side-effect-free, streaming) to FPGAs Huang, Hormati, Bacon, and Rabbah, Liquid Metal, ECOOP 2008.

Goldstein et al.'s Phoenix

Figure 3: C program and its representation comprising three hyperblocks; each hyperblock is shown as a numbered rectangle. The dotted lines represent predicate values. (This figure omits the token edges used for memory synchronization.)

Figure 8: Memory access network and implementation of the value and token forwarding network. The LOAD produces a data value consumed by the oval node. The store node may depend on the load (i.e., we have a token edge between the LOAD and the STORE, shown as a dashed line). The token travels to the root of the tree, which is a load-store queue (LSQ).

C to asynchronous logic, monolithic memory

Budiu, Venkataramani, Chelcea and Goldstein, Spatial Computation, ASPLOS 2004.

Ghica et al.'s Geometry of Synthesis

Figure 1. In-place map schematic and implementation
Algol-like imperative language to handshake circuits
Ghica, Smith, and Singh. Geometry of Synthesis IV, ICFP 2011

Greaves and Singh’s Kiwi

```
public static void SendDeviceID()
{ int devicelD = 0x76;
    for (int i = 7; i > 0; i--)
    { scl = false;
        sda_out = (deviceID & 64) != 0;
        Kiwi.Pause(); // Set it i-th bit of the device ID
        scl = true; Kiwi.Pause(); // Pulse SCL
        scl = false; deviceID = deviceID << 1;
        Kiwi.Pause();
    }
}
```

C\# with a concurrency library to FPGAs

Greaves and Singh. Kiwi, FCCM 2008

Arvind, Hoe et al.'s Bluespec

Figure 1.3 Circuit for computing $\operatorname{Gcd}(a, b)$ from Example 1.
Guarded commands and functions to synchronous logic

Hoe and Arvind, Term Rewriting, VLSI 1999

Sheeran et al.'s Lava

```
bfly :: CmplxArithmetic m
    => [CmplxSig] -> m [CmplxSig]
bfly [i1, i2] =
    do o1 <- csubtract (i1, i2)
        o2 <- cplus (i1, i2)
        return [o1, o2]
```


Figure 9: A butterfly
bflys :: CmplxArithmetic m
=> Int -> [CmplxSig] -> m [CmplxSig]
bflys $\mathrm{n}=$

riffle >-> raised n two bfly >-> unriffle

Figure 10: A butterfly stage of size 8 expressed with riffling
Functional specifications of regular structures

Bjesse, Claessen, Sheeran, and Singh. Lava, ICFP 1998

Kuper et al.'s C λ aSH

Fig. 6. 4-taps FIR Filter
More operational Haskell specifications of regular structures

Baaij, Kooijman, Kuper, Boeijink, and Gerards. C ash, DSD 2010

AutoESL (Xilinx, was Cong's xPilot)

-SSDM (System-level Synthesis Data Model)

- Hierarchical netlist of concurrent processes and communication channels

- Each leaf process contains a sequential program which is represented by an extended LLVM IR with hardware-specific semantics
- Port / IO interfaces, bit-vector manipulations, cycle-level notations

SystemC input; classical high-level synthesis for processes
Jason Cong, presentation at ISARS 2005

Optimization of Parallel "Programs" Enables Chip Design

Sun's UltraSPARC T2
The "Niagara 2"
8 cores; 64 threads
Built 2007, 1.6 GHz, 65 nm
Released open-source as the OpenSPARC T2
www.opensparc.net

454000 lines of synthesizable Verilog $\rightarrow 503000000$ transistors A mix of Boolean logic and structure

The Lesson of Logic Synthesis: the Enabling Technology

How do you compile and optimize a digital logic circuit?

$$
\begin{aligned}
& f_{1}=a b c d+a b c e+a \bar{b} c \bar{d}+a \bar{b} \bar{b} \bar{d}+\bar{a} c+c d f+a b \bar{c} \bar{d} \bar{e}+a \bar{b} \bar{c} d \bar{f} \\
& f_{2}=b d g+\bar{b} d f g+\overline{b d} g+b \bar{d} e g
\end{aligned}
$$

$$
\begin{aligned}
f_{1} & =c(x+\bar{a})+a \overline{c x} \\
f_{2} & =g x \\
x & =d(b+f)+\bar{d}(\bar{b}+e)
\end{aligned}
$$

After Brayton et al.'s class on Multi-Level Logic Synthesis

The Lesson of Logic Synthesis: the Enabling Technology

How do you compile and optimize a digital logic circuit?
Use a simple, formal model and automate it.

$$
\begin{aligned}
& f_{1}=a b c d+a b c e+a \bar{b} c \bar{d}+a \bar{b} \bar{c} \bar{d}+\bar{a} c+c d f+a b \bar{c} \bar{d} \bar{e}+a \bar{b} \bar{c} d \bar{f} \\
& f_{2}=b d g+\bar{b} d f g+\overline{b d} g+b \bar{d} e g \\
& \text { Minimize } \\
& f_{1}=b c d+b c e+\overline{b d}+\bar{a} c+c d f+a b \bar{c} \bar{d} \bar{e}+a \bar{b} \bar{c} d \bar{f} \\
& f_{2}=b d g+d f g+\overline{b d} g+\bar{d} e g
\end{aligned}
$$

Factor

$$
\begin{aligned}
& f_{1}=c(b(d+e)+\bar{b}(\bar{d}+f)+\bar{a})+a \bar{c}(b \bar{d} \bar{e}+\bar{b} d \bar{f}) \\
& f_{2}=g(d(b+f)+\bar{d}(\bar{b}+e))
\end{aligned}
$$

Decompose

$$
\begin{aligned}
f_{1} & =c(x+\bar{a})+a \overline{c x} \\
f_{2} & =g x \\
x & =d(b+f)+\bar{d}(\bar{b}+e)
\end{aligned}
$$

After Brayton et al.'s class on Multi-Level Logic Synthesis

High-Level Synthesis: Adding Time Meant Scheduling

(a)

(b) CFG

Figure 3: (a) FSM for scheduled CFG in Figure 2(b), (b) Hardware implementation of FSM using one-hot encoding

Figure 2: (a) VHDL description; (b) Separate control and data-flow graphs

Bergamaschi, Behavioral Network Graph, DAC 1999.

The High-Level Synthesis Lessons

Don't Start From C

"The so-called high-level specifications in reality grew out of the need for simulation and were often little more than an input language to make a discrete event simulator reproduce a specific behavior."

Gupta and Brewer, High-Level Synthesis: A Retrospective, 2008.
Don't Forget Memory
Goldstein et al.'s Phoenix synthesized asychronous hardware from ANSI C. Required heroic work [CGO 2003] to recover any parallelism.

Our Approach

Our Approach

Our Approach

Why Functional Specifications?

- Referential transparency/side-effect freedom make formal reasoning about programs vastly easier
- Inherently concurrent and race-free (Thank Church and Rosser). If you want races and deadlocks, you need to add constructs.
- Immutable data structures makes it vastly easier to reason about memory in the presence of concurrency

Why FPGAs?

- We do not know the structure of future memory systems Homogeneous/Heterogeneous? Levels of Hierarchy?
 Communication Mechanisms?

- We do not know the architecture of future multi-cores Programmable in Assembly/C? Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but representative of the long-term solution.

A Modern High-End FPGA: Altera's Stratix V

2500 dual-ported 2.5 KB 600 MHz memory blocks; 6 Mb total 350 36-bit 500 MHz DSP blocks (MAC-oriented datapaths) 300000 6-input LUTs; 28 nm feature size

Let's Talk Details

Let's Talk Details

Let's Talk Details

Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler's "Core" representation

$$
\text { expr }::=\text { name } v a r^{*} \quad \text { Function call }
$$

Includes primitive arithmetic operators and type constructors
Non-tail-recursive calls generally inlined to improve parallelism; Mycroft and Sharp's [IWLS 2000] propose sharing policies

True recursion transformed to tail recursion with a stack

Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler's "Core" representation

$$
\begin{aligned}
\text { expr }::= & \text { name var* } \\
& \mid \text { let }(\text { var }=\text { expr })^{+} \text {in expr }
\end{aligned}
$$

Function call
Parallel evaluation

Parallelism and sequencing:

$$
\text { let } \begin{aligned}
v_{1} & =e_{1} \\
v_{2} & =e_{2} \\
v_{3} & =e_{3} \text { in } e
\end{aligned}
$$

Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler's "Core" representation

Evaluate and return one of the expressions based on the pattern

Our Starting Point: A Functional IR

Inspired by the Glasgow Haskell Compiler's "Core" representation

```
expr ::= name var*
    | let (var = expr)+ in expr
    | case var of (pat -> expr)+
    | var
    | literal
pat ::= literal
    | _
    | Constr. (var | literal | _)*
```

 Function call
 Parallel evaluation
 Multiway conditional
 Variable reference
 Literal value
 Exact match
Default
Match a tagged union

The Type System: Tagged Unions

Types are primitive (Boolean, Integer, etc.) or tagged unions:

```
type ::= Type
    | Constr Type* | . | | Constr Type*
```

Named type/primitive
Tagged union

Subsume C structs, unions, and enums
Comparable power to C++ objects with virtual methods
Sometimes called "algebraic data types": sums of products

The Type System: Tagged Unions

Types are primitive (Boolean, Integer, etc.) or tagged unions:

$$
\begin{array}{rll}
\text { type }::=\text { Type } & \text { Named type/primitive } \\
& \mid \text { Constr Type }|\cdots| \text { Constr Type* } & \text { Tagged union }
\end{array}
$$

Examples:

$$
\begin{aligned}
\text { data } \text { Intlist } & =\text { Nil } \quad-- \text { Linked list of integers } \\
& \mid \text { Cons } \text { Int } \text { Intlist }
\end{aligned}
$$

$$
\begin{gathered}
\text { data } \text { Bintree }=\text { Leaf } \text { Int }- \text { Binary tree w/ integer leaves } \\
\mid \text { Branch BinTree Bintree }
\end{gathered}
$$

$$
\text { data } \text { Expr }=\text { Literal } \text { Int } \quad-- \text { Arithmetic expression }
$$

| Var String
Binop Expr Op Expr

$$
\text { data } O p=A d d|S u b| M u l t \mid \text { Div }
$$

Syntax-Directed Translation of Expressions to Hardware

Combinational functions:

Sequential functions:

Translating Let and Case

Let makes all new variables available to its body.

Case invokes one of its sub-expressions, then synchronizes.

Representing Recursive Algebraic Data Types

Consider a list of integers:
data Intlist $=$ Nil
| Cons Int Intlist
An obvious representation:

1	Integer	Pointer

Nil

Cons Int Intlist

- Usual byte-alignment unnecessary \& wasteful in hardware
- Naturally stored \& managed in a custom integer-list memory
- Width of pointer can depend on integer-list memory size

Removing Recursion: Recursive Fibonacci Example

Starting point: a dumb way to compute Fibonacci numbers

$$
\begin{aligned}
& \text { fib } 1=1 \\
& \text { fib } 2=1 \\
& \text { fib } n=\text { fib }(n-1)+f i b(n-2)
\end{aligned}
$$

Removing Recursion: Recursive Fibonacci

Reformatting

$$
\begin{array}{lllc}
f i b & 1 & = & 1 \\
\text { fib } 2 & & & 1 \\
\text { fib } & n & & \\
& & f i b & (n-1)+ \\
& & & \text { fib }
\end{array}
$$

Removing Recursion: Continuation-Passing Style

In continuation-passing style (the "and then?" transformation):

$$
\begin{array}{lllll}
\text { fib1 1 } & c & = & c 1 & \\
\text { fib1 } 2 & c & = & c 1 & \\
\text { fib1 } n & c & = & \text { fib1 }(n-1) & \text {-- Calls made sequent } \\
& & (\backslash n 1-> & \text { fib1 }(n-2) & \text {-- Intermediates nam } \\
& & (\backslash n 2-> & c(n 1+n 2))) & \text { - - Add scheduled last } \\
\text { fib } n & & = & \text { fib1 } n(\backslash x->x) & \text {-- Wrapper }
\end{array}
$$

Removing Recursion: Naming Functions

Naming functions; converting unbound variables to arguments:

Removing Recursion: True Recursion to Tail Recursion

Introducing a stack; merging functions

f	(Fibl 1 c)	$=f($ Cont c 1)	-- Single function
f	(Fib1 2 c)	$=f($ Cont c 1)	-- Continuation the stack
f	(Fibl n c)	$=f($ Fibl ($n-1$	
$f($ Cont (Fib2 n c) $n 1)=f($ Fib1 ($n-2)($ Fib3 n1 c) $)$			
$f(\operatorname{Cont}($ Fib3 n1 c) n2 $)=f(\operatorname{Contc}(n 1+n 2))$			
f	(Fib n)	$=f($ Fibl n Fi	
	t Fibo n)	$=n$	

> - - Continuations (references to the lambda expressions) data Stack $=$ Fib2 Int Stack -- fib2 n c

Fibonacci Datapath

data Stack = Fib2 Int Stack
Fib3 Int Stack
Fib0
data Action = Fib Int
| Fibl Int Stack
Cont Stack Int

Implementing the Stack in Hardware

This uses a list-like stack data type:
data Stack = Fib2 Int Stack
| Fib3 Int Stack
Fibo
A naïve, but correct, way to implement it in hardware:

Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib2 17 (Fib3 8 (Fib3 2 Fib0)))

Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib2 17 (Fib3 8 (Fib3 2 Fib0)))

The only "pop" operation discards the previous top-of-stack

$$
f(\text { Cont }(\text { Fib3 n1 c) n2) }=f(\text { Cont } c(n 1+n 2))
$$

so this code will never generate a tree.
Sequential memory allocation is safe.

Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib2 17 (Fib3 8 (Fib3 2 Fib0)))

Sequential memory allocation makes "next" pointers predictable...

Specializing Data Types: Recovering a Classical Stack

Fib3 42 (Fib2 17 (Fib3 8 (Fib3 2 Fib0)))

...so there is no need to store them.
Constructor (Fib0) always returns 0.
Constructors (Fib2/3 $n s$) writes (Fib2/3 n) at $s+1$ and returns $s+1$. Reading 0 returns Fib0; reading s returns (Fib2/3ns-1).

Specializing Data Types

Stacks are the tip of the iceberg
Synthesizing custom memory systems for specific types is a key goal of this project

Shape Analysis relevant here
This is a simple case; a simple, mathematical IR enables such clever optimizations.

Imagine trying to do this in C.

Unrolling Code for Better Parallelism

$$
\begin{aligned}
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\text { fib } \quad(n-1)+f i b \quad(n-2)
\end{aligned}
$$

$$
\begin{aligned}
& f i b(n-1) \text { and } f i b(n-2) \text { are } \\
& \text { functionally independent. }
\end{aligned}
$$

Yet because they share fib, they are performed sequentially.

Unrolling Code for Better Parallelism

$$
\begin{aligned}
& \text { fib } 0=0 \\
& \text { fib } 1=1 \\
& \text { fib } n=\text { fib' }(n-1)+\text { fib'" }^{\prime}(n-2) \\
& \text { fib' } 0=0 \\
& \text { fib' } 1=1 \\
& \text { fib' } n=\text { fib' }(n-1)+\text { fib' }^{\prime}(n-2) \\
& \text { fib" } 0=0 \\
& \text { fib'" } 1=1 \\
& \text { fib' } n=\text { fib" }(n-1)+\text { fib' }^{\prime \prime}(n-2)
\end{aligned}
$$

By unrolling the recursion once, $f i b$ ' and $f i b$ " run in parallel.

A further improvement: balance the work done by fib' and fib"

Unrolling Types for Better Locality

data | Stack | $=$ Fib2 Int Stack |
| ---: | :--- |
| | $\left.\left\lvert\, \begin{array}{l}\text { Fib3 Int Stack } \\ \\ \end{array}\right.\right)$ Fib0 |

Each Stack object naturally represents a single activation record

Unrolling Types for Better Locality

A similar unrolling amounts to packing records that can be processed in parallel

Abstract data types enables this
Imagine trying to do this safely in a C compiler

Example: Huffman Decoder in Haskell

data HTree $=$ Branch HTree HTree

| Leaf Char

decode :: HTree $->$ [Bool] \rightarrow [Char $]$-- Huffman tree \& bitstream to symbols
decode table str $=$ decoder table str
where
decoder (Leaf s) $i=s:($ decoder table i) -- Identified symbol; start again
decoder_ [] = []
decoder (Branchf_) (False: $x s$) $=\operatorname{decoder} f x s--0$: follow left branch
decoder (Branch_t) (True: $x s$) $=$ decoder $t x s--1$: follow right branch
Three data types: Input bitstream, output character stream, and Huffman tree

Optimizations

Target Applications

- "Data-parallel irregular applications [that] manipulate large pointer-based data structures like graphs"
[Pingali et al.'s Galois project]
- Datatype accelerators

Hash tables, Balanced trees, Heaps

- Application-domain accelerators

Relational databases, Crypography, Data compression

- Non-scientific computing: the stuff that's hard for vector units and GPGPUs

Acknowledgements

Project started while at MSR Cambridge

Satnam Singh (now at Google)

Simon Peyton Jones (MSR)

Martha Kim (Columbia)

