
High-level Synthesis from Functional Languages

Stephen A. Edwards

Columbia University

Fall 2010

(λx.?) f = FPGA

Parallelism is the Big Question

Parallelism is the Big Question

Massive On-Chip Parallelism is Inevitable

Intel’s 48-core “Single Chip Cloud Computer”

The Future is Wires and Memory

The Future is Already Here

Altera Stratix IV FPGA

The Memory Hierarchy is the Interesting Part

The Big Question

How Do Algorithms Manipulate Data?

My Hypothesis

How Do Algorithms Manipulate Data?

We will only be able to answer this in very disciplined languages.

E.g., pure functional languages with immutable data structures

Why Functional Specifications?

Ï Referential transparency/side-effect
freedom make formal reasoning about
programs vastly easier

Ï Inherently concurrent and race-free
(Thank Church and Rosser). If you
want races and deadlocks, you need to
add constructs.

Ï Immutable data structures makes it
vastly easier to reason about memory
in the presence of concurrency

Multiprocessor Memory is a Headache

Ï Cache Coherency

Ï Write buffers

Ï Sequential Memory Consistency

Ï Memory barriers

Ï Data Races

Ï Atomic operations

Immutable data structures simplify
these

I Don’t Think We Want Laziness

Laziness has certain semantic
advantages, but the bookkeeping
is probably not worth it

Approach

Ï We do not know the structure of future memory systems
Homogeneous/Heterogeneous?
Levels of Hierarchy?
Communication Mechanisms?

Ï We do not know the architecture of future multi-cores
Programmable in Assembly/C?
Single- or multi-threaded?

Use FPGAs as a surrogate. Ultimately too flexible, but
representative of the long-term solution.

The Big Question′

How do we synthesize hardware
from pure functional languages

for FPGAs?

Control and datapath are easy; the memory system is interesting.

To Implement Real Algorithms in Hardware, We Need

Structured, recursive data types

Recursion to handle recursive data types

Memories

Memory Hierarchy

Example: Huffman Decoder in Haskell

data HTree = Branch HTree HTree
| Leaf Char

decode :: HTree −> [Bool] −> [Char] −− Huffman tree & bitstream to symbols

decode table str = decoder table str
where

decoder (Leaf s) i = s : (decoder table i) −− Identified symbol; start again
decoder _ [] = []
decoder (Branch f _) (False:xs) = decoder f xs −− 0: follow left branch
decoder (Branch _ t) (True:xs) = decoder t xs −− 1: follow right branch

Three data types: Input bitstream, output character stream, and
Huffman tree

One Way to Encode the Types

Huffman tree nodes: (19 bits)

0 8-bit character (unused) Leaf Char
1 9-bit tree ptr. 9-bit tree ptr. Branch Tree Tree

Boolean input stream: (10 bits)

0 (unused) Nil
1 bit 8-bit tail pointer Cons Bool List

Character output stream: (19 bits)

0 (unused) Nil
1 8-bit character 10-bit tail pointer Cons Char List

Intermediate Representation Desiderata

Mathematical formalism convenient for performing “parallelizing”
transformations, a.k.a. parallel design patterns

Ï Pipeline

Ï Speculation

Ï Multiple workers

Ï Map-reduce

Intermediate Representation: Recursive “Islands”

program ::= island∗

island ::= island name arg∗ = expr state∗ Group of states w/ stack

state ::= label arg∗ = expr Arguments & expression

expr ::= name var∗ Apply a function
| let (var = expr)+ in expr Parallel evaluation
| case var of (pattern -> expr)+ Multiway conditional
| var
| literal
| recurse label var∗ (var∗) Explicit continuation
| return var
| goto label var∗ Branch to another state

pattern ::= name var∗ | literal | _ Constructor/literal/def.

Huffman as a Recursive Island

data HTree = Branch HTree HTree
| Leaf Char

decode :: HTree −> [Bool] −> [Char]

decode table str = decoder table str
where

decoder (Leaf s) i =
s : (decoder table i)

decoder _ [] = []
decoder (Branch f _) (False:xs) =

decoder f xs
decoder (Branch _ t) (True:xs) =

decoder t xs

island decoder treep ip =
let r = dec treep treep ip in return r

island dec treep statep ip =
let i = fetchi ip

state = fetcht statep in
case state of
Leaf a −> recurse s1 a (treep treep ip)
Branch f t −>

case i of
Nil −> let np = Nil in return np
Cons x xsp −>

case x of
True −> goto dec treep t xsp
False −> goto dec treep f xsp

s1 a rp = let rrp = Cons a rp
in return rrp

The Basic Translation Template

go ready

resultinputs

Strobe-based interface: go indicates inputs are valid; ready pulses
once when result is valid.

Translating Let and Case

e1

en

e
go ready

result
}

v1

}
v2

Let makes new values available to an expression.

go

v

e1

en

ready
result

Case invokes one of its sub-expressions, then synchronizes.

Translating an Island

SP

Controllergo ready

push
pop

Stack
wr

e1

e2

en

go1

go2

gon

arg1 · · · argn

result

ready

Each island consists of expressions for each state, its own stack, and
a controller that manages the stack and invokes the states.

Constructors and Memory

A constructor is a function that stores data in memory.

constructor α ::α→ Ptr α

Memory access functions turn pointers into data.

fetch α :: Ptr α→α

Memory stores return an address, not take one as an argument

Constructor is responsible for memory management.

By default, each data type gets its own memory.

Duplication for Performance

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

After duplicating functions:

fib 0 = 0
fib 1 = 1
fib n = fib ’ (n−1) + fib ’’ (n−2)

fib ’ 0 = 0
fib ’ 1 = 1
fib ’ n = fib ’ (n−1) + fib’ (n−2)

fib ’’ 0 = 0
fib ’’ 1 = 1
fib ’’ n = fib ’’ (n−1) + fib ’’ (n−2)

Here, fib’ and fib” may run in
parallel.

Duplication for Performance

fib 0 = 0
fib 1 = 1
fib n = fib (n−1) + fib (n−2)

After duplicating functions:

fib 0 = 0
fib 1 = 1
fib n = fib ’ (n−1) + fib ’’ (n−2)

fib ’ 0 = 0
fib ’ 1 = 1
fib ’ n = fib ’ (n−1) + fib’ (n−2)

fib ’’ 0 = 0
fib ’’ 1 = 1
fib ’’ n = fib ’’ (n−1) + fib ’’ (n−2)

Here, fib’ and fib” may run in
parallel.

Unrolling Recursive Data Structures

Like a “blocking factor,” but more general. Idea is to create larger
memory blocks that can be operated on in parallel.

Original Huffman tree type:

data Htree = Branch Htree HTree | Leaf Char

Unrolled Huffman tree type:

data Htree = Branch Htree’ HTree’ | Leaf Char
data Htree’ = Branch’ Htree’’ HTree’’ | Leaf’ Char
data Htree’’ = Branch’’ Htree HTree | Leaf’’ Char

Recursive instances must be pointers; others can be explicit.

Functions must be similarly modified to work with the new types.

Acknowledgements

Project started while at MSR Cambridge

Satman Singh

Simon Peyton Jones

