
What Do We Do With 1012

Transistors?

The Case for Precision Timing

Stephen A. Edwards

Columbia University

What Not To Do

• Not just a single CPU

Processor architects have already

given up trying to figure out how

to waste that many transistors

• Not just one big memory

Von Neumann Bottleneck

1012 bits vs. a 1 GHz clock:

minutes

What Not To Do

• Not “Internet-on-a-chip” (TCP/IP over Ethernet)

On-chip communication more reliable

No on-chip backhoes to worry about

We are not good at programming these anyway

• Not just an FPGA

Non-software systems disappeared

in the early 1980s

Every interesting system

has lots of software

What We Probably Will Do

An FPGA-like mesh of computational elements floating in a

sea of communication.

Comm. FPGA

CPU Memory

Not to scale

What Sort Of Processor?

Hypothesis: it should be a

precision-timed “PRET” processor

Embedded Systems Dominate

• In 2004, 97% of the 6.5 billion processors

shipped went into embedded system.

• In 2004, 674 million cell phones sold,

3.3 billion total subscribers

2004 world population: 6.4 billion

• 100 processors in a typical automobile

Embedded Application Areas

Hard real-time systems

• Avionics

• Automotive

• Multimedia

• Consumer Electronics

The World as We Know It

We do not consider

how fast a processor

runs when we evaluate

whether it is “correct.”

Salvador Dali, The Persistence of Memory,

1931. (detail)

This Is Sometimes Useful For

• Programming languages

• Virtual memory

• Caches
• Dynamic dispatch

• Speculative execution

• Power management (voltage scaling)

• Memory management (garbage collection)

• Just-in-time (JIT) compilation

• Multitasking (threads and processes)

• Component technologies (OO design)

• Networking (TCP)

But Time Sometimes Matters

Kevin Harvick winning the Daytona 500 by 20 ms, February 2007. (Source: Reuters)

Isn’t Real-Time Scheduling Solved?

Initiation DeadlineExecution time
︷ ︸︸ ︷

︸ ︷︷ ︸

Period

Fixed-priority (RMA): schedulable if < 69% utilization

Variable-priority (EDF): schedulable if < 100% utilization

Hinges on knowing task execution times

Worst-Case Execution Time

Virtually impossible to compute on modern processors.

Feature Nearby Distant Memory

instructions instructions layout

Pipelines
√

Branch Prediction
√ √

Caches
√ √ √

Processors are Actually Chaotic

Berry et al., Chaos in computer

performance, Chaos 16:013110,

2006.

Sprott, Strange Attractors,

Figure 5–13.

Herring

State-of-the-art WCET

• Motorola ColdFire

• Two coupled pipelines (7-stage)

• Shared instruction & data cache

• Artificial example from Airbus

• Twelve independent tasks

• Simple control structures

• Cache/Pipeline interaction leads

to large integer linear

programming problem

IAG

�
addr (a)

�

wait

IC1

�
await (a)

�

wait

IC2

�
put (a)

�

wait

IED

�
instr

�

wait

IB

�
start

�
�

�
�

��

�

�

next

EX

�
store

�

wait

SST

�

�

�

�cancel

cancel

cancel

cancel �

�

�set (a) / stop

set (a) / stop

�

�fetch (a)
�

hold

� code (a)

�read (A) / write (A)
�

data / hold

B

U

S

U

N

I

T

C. Ferdinand et al., “Reliable and

precise WCET determination for a

real-life processor,” EMSOFT 2001

The Problem

Digital hardware provides extremely precise timing

20.000 MHz (± 100 ppm)

and modern architectural complexity discards it.

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Caches and Memory Hierarchy?

Our goal: a predictable memory hierarchy

Use software-managed scratchpads with compiler support

CPU

SP1

SP2

Core

DMA

Well-studied:

Panda et al. [EDAC 1997],

Kandemir et al. [DAC 2001, 2002],

Banakar et al. [CODES 2002],

Angiolini et al. [CASES 2003, 2004],

Udaykumaran et al. [CASES 2003],

Verma et al [DATE 2004],

Francesco et al. [DAC 2004],

Dominguez et al. [JES 2005],

Li et al. [PACT 2005],

Egger et al. [Emsoft 2006],

Janapsatya et al. [ASPDAC 2006].

Pipelines?

Use thread-interleaved pipelines to

avoid hazards

An old idea (60s): one thread per

pipeline stage

Like Simultaneous Multi-threading,

but it works

Lee and Messerschmitt, Pipeline In-

terleaved Programmable DSP’s: Ar-

chitecture, ASSP-35(9) 1987.

Interrupts?

One processor per interrupt source

Use polling; more predictable

I/O processors have a long history anyway

Really a way to share the processor resource across I/O

sources

Isn’t this wickedly inefficient?

Go Ahead: Leave Processors Idle

Modern processors do this at the functional unit level.

Schuette and Shen (MICRO 1991) found for their VLIW,

Unit Utilization

Integer Fetch Unit 12–44%

Floating-point Fetch Unit 7–23%

Integer Registers 4–37%

Floating-point Registers 8–25%

Shared Registers 1–65%

Integer Bus 1–22%

Floating-point Bus 4–25%

Shared Bus 2–5%

Address Bus 2–37%

This is actually

a good thing for

power

Communication?

Use time-triggered busses (statically scheduled, periodic)

Examples: FlexRay, TTP, ATM

Source: TZM

Shared Resources?

Like communication, scheduled, periodic access sharing

First Ferris Wheel, 1893 World’s Columbian Exposition, Chicago

The Parallax Propeller Chip

The Parallax Propeller Chip

• 80 MHz low-power (<300mW) full-custom IC

• 8 32-bit, 20 MIPS “cog” processors each w/ 2K RAM

• 32K + 32K of round-robin-shared RAM and ROM

• On reset, program in main RAM copied to local ones

• Most instructions take 4 cycles

• To access main memory, wait for turn (7–22 cycles)

• No interrupts: devote one or more cogs to I/O

• ROM includes font with symbols for transistors, timing

diagrams (!)

Operating System?

Process scheduling not necessary

Resource allocation largely static

Hardware abstraction layer (device drivers, etc.) useful

An Example: An ISA with Timing

MIPS-like processor with 16-bit data path as proof of

concept for ISAs with timing

One additional “deadline” instruction:

dead timer, timeout

Wait until timer expires, then immediately reload it with

timeout.

Nicholas Ip and Stephen A. Edwards, “A Processor Extension for

Cycle-Accurate Real-Time Software,” Proceedings of EUC, Seoul,

Korea, August 2006.

Programmer’s Model

General-purpose

Registers
15 0

$0 (= 0)

$1

$2

...

$13

$14

$15

Timers
15 0

$t0

$t1

$t2

$t3

Program counter

15 0

$pc

Instructions

add Rd, Rs, Rt
addi Rd, Rs, imm16
and Rd, Rs, Rt
andi Rd, Rs, imm16
be Rd, Rs, offset
bne Rd, Rs, offset
j target
lb Rd, (Rt + Rs)
lbi Rd, (Rs + offset)
mov Rd, Rs
movi Rd, imm16
nand Rd, Rs, Rt
nandi Rd, Rs, imm16
nop
nor Rd, Rs, Rt
nori Rd, Rs, imm16

or Rd, Rs, Rt
ori Rd, Rs, imm16
sb Rd, (Rt + Rs)
sbi Rd, (Rs + offset)
sll Rd, Rs, Rt
slli Rd, Rs, imm16
srl Rd, Rs, Rt
srli Rd, Rs, imm16
sub Rd, Rs, Rt
subi Rd, Rs, imm16
dead T, Rs
deadi T, imm16
xnor Rd, Rs, Rt
xnori Rd, Rs, imm16
xor Rd, Rs, Rt
xori Rd, Rs, imm16

Architecture

Instruction Decoder

$t0
$t1
$t2
$t3

$pc

Program
Memory
128 × 32

$0
$1
$2

$14
$15

.

.

.

· · ·

Data
Memory
16K × 8imm

16

imm16

addr

data

pixel

Behavior of Dead

deadi $t0, 8

add $r1, $r2, $r3

deadi $t0, 10

add $r1, $r2, $r3

cycle instruction $t0

−4 deadi $t0, 8 3

−3 " 2

−2 " 1

−1 " 0

0 add $r1, $r2, $r3 7

1 deadi $t0, 10 6

2 " 5
...

...
...

7 " 0







8 cycles

8 add $r1, $r2, $r3 9

Case Study: Video

80 × 30 text-mode display, 25 MHz pixel clock

Need 40 ns precision

Shift register in hardware; everything else in software

Char.
Data
2.5K

Font
Data
1.5K

Control

Shift Register

VSYNCHSYNC

Video

BLANKLoad
/Shift

Case Study: Video

movi $2, 0 ; reset line address
row:

movi $7, 0 ; reset line in char
line:

deadi $t1, 96 ; h. sync period
movi $14, HS+HB
ori $3, $7, FONT ; font base address
deadi $t1, 48 ; back porch period
movi $14, HB
deadi $t1, 640 ; active video period
mov $1, 0 ; column number

char:
lb $5, ($2+$1) ; load character
shli $5, $5, 4 ; *16 = lines/char
deadi $t0, 8 ; wait for next character
lb $14, ($5+$3) ; fetch and emit pixels
addi $1, $1, 1 ; next column
bne $1, $11, char
deadi $t1, 16 ; front porch period
movi $14, HB
addi $7, $7, 1 ; next row in char
bne $7, $13, line ; repeat until bottom
addi $2, $2, 80 ; next line
bne $2, $12, row ; until at end

Two nested loops:

• Active line

• Character

Two timers:

• $t1 for line timing

• $t0 for character

78 lines of assembly

replaces 450 lines

of VHDL (1/5th)

Case Study: Serial Receiver

movi $3, 0x0400 ; final bit mask (10 bits)
movi $5, 651 ; half bit time for 9600 baud
shli $6, $5, 1 ; calculate full bit time

wait_for_start:
bne $15, $0, wait_for_start

got_start:
wait $t1, $5 ; sample at center of bit
movi $14, 0 ; clear received byte
movi $2, 1 ; received bit mask
movi $4, 0 ; clear parity
dead $t1, $6 ; skip start bit

receive_bit:
dead $t1, $6 ; wait until center of next bit
mov $1, $15 ; sample
xor $4, $4, $1 ; update parity
and $1, $1, $2 ; mask the received bit
or $14, $14, $1 ; accumulate result
shli $2, $2, 1 ; advance to next bit
bne $2, $3, receive_bit

check_parity:
be $4, $0, detect_baud_rate
andi $14, $14, 0xff ; discard parity and stop bits

Sampling rate under

software control

Standard algorithm:

1. Find falling edge

of start bit

2. Wait half a bit

time

3. Sample

4. Wait full bit time

5. Repeat 3. and 4.

Implementation

Synthesized on an

Altera Cyclone II FPGA

(DE2 board)

Coded in VHDL

Runs at 50 MHz

Unpipelined

Uses on-chip memory

Our Vision: PRET Machines

Predictable performance, not just good average case

Current Alternative

Caches Scratchpads

Pipelines Thread-interleaved pipelines

Function-only ISAs ISAs with timing

Function-only languages Languages with timing

Best-effort communication Fixed-latency communication

Time-sharing Multiple independent processors

Final Provocative Hypothesis

PRET will help parallel general-purpose applications by

making their behavior reproducible.

Data races, non-atomic updates still a danger, but at least

they can be reproduced.

	What Not To Do
	What Not To Do
	What We Probably Will Do
	What Sort Of Processor?
	Embedded Systems Dominate
	Embedded Application Areas
	The World as We Know It
	This Is Sometimes Useful For
	But Time Sometimes Matters
	Isn't Real-Time Scheduling Solved?
	Worst-Case Execution Time
	Processors are Actually Chaotic
	State-of-the-art WCET
	The Problem
	Our Vision: PRET Machines
	Caches and Memory Hierarchy?
	Pipelines?
	Interrupts?
	Go Ahead: Leave Processors Idle
	Communication?
	Shared Resources?
	The Parallax Propeller Chip
	The Parallax Propeller Chip

	Operating System?
	An Example: An ISA with Timing
	Programmer's Model
	Instructions
	Architecture
	Behavior of emph {Dead}
	Case Study: Video
	Case Study: Video
	Case Study: Serial Receiver
	Implementation
	Our Vision: PRET Machines
	Final Provocative Hypothesis

