
Precision-Timed (PRET)

Machines

Stephen A. Edwards

Columbia University

Joint work with Edward A. Lee,

University of California, Berkeley

A Major Historical Event

In 1980, Patterson and Ditzel did

not invent reduced instruction set

computers (RISC machines).

D. A. Patterson and D. R. Ditzel, “The case for the reduced instruction

set computer,” ACM SIGARCH Computer Architecture News,

8(6):25-33, Oct. 1980.

Another Major Historical Event

In 2006, Lee and Edwards did not

invent reduced precision-timed

computers (PRET machines).

S. A. Edwards and E. A. Lee, “The Case for the Precision Timed (PRET)

Machine,” EECS Department, University of California, Berkeley,

Technical Report No. UCB/EECS-2006-149, November 17, 2006.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-149.html

The World as We Know It

We do not consider

how fast a processor

runs when we evaluate

whether it is “correct.”

Salvador Dali, The Persistence of Memory,

1931. (detail)

This Is Sometimes Useful For

• Programming languages

• Virtual memory

• Caches
• Dynamic dispatch

• Speculative execution

• Power management (voltage scaling)

• Memory management (garbage collection)

• Just-in-time (JIT) compilation

• Multitasking (threads and processes)

• Component technologies (OO design)

• Networking (TCP)

But Time Sometimes Matters

Kevin Harvick winning the Daytona 500 by 20 ms, February 2007. (Source: Reuters)

Isn’t Real-Time Scheduling Solved?

Initiation DeadlineExecution time
︷ ︸︸ ︷

︸ ︷︷ ︸

Period

Fixed-priority (RMA): schedulable if < 69% utilization

Variable-priority (EDF): schedulable if < 100% utilization

Hinges on knowing task execution times

Interrupt Latency and Response

background task

CS

ISR

CS

background task

Interrupt
Interrupts may be disabled here

Scheduler runs

Latency

Response time

Need longest interrupt-disabled time + scheduling time
After Labrosse, MicroC/OS-II: The Real-Time Kernel, 1999.

Jitter from Delaying for One Tick

Tick

ISR

Higher-
priority tasks

“Delay 10 ms”

10 ms

6.3 ms 5.5 ms5.5 ms 19.8 ms

Starved

ISR time + other task time + our delay

Worst-Case Execution Time

Virtually impossible to compute on modern processors.

Feature Nearby Distant Memory

instructions instructions layout

Pipelines
√

Branch Prediction
√ √

Caches
√ √ √

State-of-the-art WCET

• Motorola ColdFire

• Two coupled pipelines (7-stage)

• Shared instruction & data cache

• Artificial example from Airbus

• Twelve independent tasks

• Simple control structures

• Cache/Pipeline interaction leads

to large integer linear

programming problem

IAG

�
addr (a)

�

wait

IC1

�
await (a)

�

wait

IC2

�
put (a)

�

wait

IED

�
instr

�

wait

IB

�
start

�
�

�
�

��

�

�

next

EX

�
store

�

wait

SST

�

�

�

�cancel

cancel

cancel

cancel �

�

�set (a) / stop

set (a) / stop

�

�fetch (a)
�

hold

� code (a)

�read (A) / write (A)
�

data / hold

B

U

S

U

N

I

T

C. Ferdinand et al., “Reliable and

precise WCET determination for a

real-life processor,” EMSOFT 2001

Certification in Avionics

• Rather expensive

• Software is not certified

• Entire system is certified

• Slight change, e.g., in

the microprocessor,

requires recertification

• Solution: stockpile

parts; trust nobody
(Source: NASA)

The Problem

Digital hardware provides extremely precise timing

20.000 MHz (± 100 ppm)

and architectural complexity discards it.

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Our Vision: PRET Machines

Predictable performance, not just good average case

Current Alternative

Caches Scratchpads

Pipelines Thread-interleaved pipelines

Function-only ISAs ISAs with timing

Function-only languages Languages with timing

Best-effort communication Fixed-latency communication

Time-sharing Multiple independent processors

Application Areas

Hard real-time systems

• Avionics

• Automotive

• Multimedia

• Consumer Electronics

• Simple digital hardware

Basic Idea

Q: How do you make software run

at a precise speed?

Basic Idea

Q: How do you make software run

at a precise speed?

A: Give it access to a clock.

One Usual Way: Timers

Period timer interrupt triggers scheduler

Large period reduces overhead

Linux uses a 10 ms clock

Result: OS provides 10 ms resolution at best

Higher precision requires more overhead

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

Or NOPs/cycle counting

Code from Linux arch/i386/kernel/timers/timer_none.c

delay_none:

0: push %ebp

1: mov %esp,%ebp

3: sub $0x4,%esp

6: mov 0x8(%ebp),%eax

9: jmp 10

10: jmp 20

20: dec %eax

21: jns 20

23: mov %eax,­4(%ebp)

26: leave

27: ret

Tricky

Clock speed + cache behavior

+ branch behavior + ?

This example worries about

cache alignment

Very much an

assembly-language trick

1000s of lines of code in

Linux needed for busy wait

Related Work: Giotto

Giotto [Henzinger, Horowitz, Kirsch: Proc. IEEE 2003]

The RTOS style: specify a collection of tasks and modes.

Compiler produces schedule (task priorities).

Precision limited by periodic timer interrupt.

mode forward() period 200 {

actfreq 1 do leftJet(leftMotor);

actfreq 1 do rightJet(rightMotor);

exitfreq 1 do point(goPoint);

exitfreq 1 do idle(goIdle);

exitfreq 1 do rotate(goRotate);

taskfreq 2 do errorTask(getPos);

taskfreq 1 do forwardTask(getErr);

}

Related Work: STI

RT Guest

Thread

Existing

Thread

Integrated

Thread

Idle

Time

Hardware

Function

Software Thread Integration

[Dean: RTSS 1998]

Insert code for a

non-real-time thread into a

real-time thread.

Pad the rest with NOPs

Often creates code explosion

Requires PRET processors; he

uses AVRs

Related Work: VISA

VISA [Meuller et al.: ISCA 2003]

Run two processors:

• Slow and predictable

• Fast and unpredictable

Start tasks on both.

If fast completes first, use extra time.

If fast misses a checkpoint, switch over to slow.

A First Attempt

MIPS-like processor with 16-bit data path as proof of

concept

One additional “deadline” instruction:

dead timer, timeout

Wait until timer expires, then immediately reload it with

timeout.

Nicholas Ip and Stephen A. Edwards, “A Processor Extension for

Cycle-Accurate Real-Time Software,” Proceedings of EUC, Seoul,

Korea, August 2006.

Programmer’s Model

General-purpose

Registers
15 0

$0 (= 0)

$1

$2

...

$13

$14

$15

Timers
15 0

$t0

$t1

$t2

$t3

Program counter

15 0

$pc

Instructions

add Rd, Rs, Rt
addi Rd, Rs, imm16
and Rd, Rs, Rt
andi Rd, Rs, imm16
be Rd, Rs, offset
bne Rd, Rs, offset
j target
lb Rd, (Rt + Rs)
lbi Rd, (Rs + offset)
mov Rd, Rs
movi Rd, imm16
nand Rd, Rs, Rt
nandi Rd, Rs, imm16
nop
nor Rd, Rs, Rt
nori Rd, Rs, imm16

or Rd, Rs, Rt
ori Rd, Rs, imm16
sb Rd, (Rt + Rs)
sbi Rd, (Rs + offset)
sll Rd, Rs, Rt
slli Rd, Rs, imm16
srl Rd, Rs, Rt
srli Rd, Rs, imm16
sub Rd, Rs, Rt
subi Rd, Rs, imm16
dead T, Rs
deadi T, imm16
xnor Rd, Rs, Rt
xnori Rd, Rs, imm16
xor Rd, Rs, Rt
xori Rd, Rs, imm16

Architecture

Instruction Decoder

$t0
$t1
$t2
$t3

$pc

Program
Memory
128 × 32

$0
$1
$2

$14
$15

.

.

.

· · ·

Data
Memory
16K × 8imm

16

imm16

addr

data

pixel

Behavior of Dead

deadi $t0, 8

add $r1, $r2, $r3

deadi $t0, 10

add $r1, $r2, $r3

cycle instruction $t0

−4 deadi $t0, 8 3

−3 " 2

−2 " 1

−1 " 0

0 add $r1, $r2, $r3 7

1 deadi $t0, 10 6

2 " 5
...

...
...

7 " 0







8 cycles

8 add $r1, $r2, $r3 9

Idioms: Straightline Code

deadi $t0, 42
...

deadi $t0, 58
...

deadi $t0, 100

First block will take

at least 42 cycles.

Second block: at

least 58 cycles.

Idioms: Loops

L1:
...

deadi $t0, 42
...

bne $r1, $r2, L1

Put a deadline in a loop:

Each iteration will take at

least 42 cycles.

Case Study: Video

80 × 30 text-mode display, 25 MHz pixel clock

Need 40 ns precision

Shift register in hardware; everything else in software

Char.
Data
2.5K

Font
Data
1.5K

Control

Shift Register

VSYNCHSYNC

Video

BLANKLoad
/Shift

Case Study: Video

movi $2, 0 ; reset line address
row:

movi $7, 0 ; reset line in char
line:

deadi $t1, 96 ; h. sync period
movi $14, HS+HB
ori $3, $7, FONT ; font base address
deadi $t1, 48 ; back porch period
movi $14, HB
deadi $t1, 640 ; active video period
mov $1, 0 ; column number

char:
lb $5, ($2+$1) ; load character
shli $5, $5, 4 ; *16 = lines/char
deadi $t0, 8 ; wait for next character
lb $14, ($5+$3) ; fetch and emit pixels
addi $1, $1, 1 ; next column
bne $1, $11, char
deadi $t1, 16 ; front porch period
movi $14, HB
addi $7, $7, 1 ; next row in char
bne $7, $13, line ; repeat until bottom
addi $2, $2, 80 ; next line
bne $2, $12, row ; until at end

Two nested loops:

• Active line

• Character

Two timers:

• $t1 for line timing

• $t0 for character

78 lines of assembly

replaces 450 lines

of VHDL (1/5th)

Case Study: Serial Receiver

movi $3, 0x0400 ; final bit mask (10 bits)
movi $5, 651 ; half bit time for 9600 baud
shli $6, $5, 1 ; calculate full bit time

wait_for_start:
bne $15, $0, wait_for_start

got_start:
wait $t1, $5 ; sample at center of bit
movi $14, 0 ; clear received byte
movi $2, 1 ; received bit mask
movi $4, 0 ; clear parity
dead $t1, $6 ; skip start bit

receive_bit:
dead $t1, $6 ; wait until center of next bit
mov $1, $15 ; sample
xor $4, $4, $1 ; update parity
and $1, $1, $2 ; mask the received bit
or $14, $14, $1 ; accumulate result
shli $2, $2, 1 ; advance to next bit
bne $2, $3, receive_bit

check_parity:
be $4, $0, detect_baud_rate
andi $14, $14, 0xff ; discard parity and stop bits

Sampling rate under

software control

Standard algorithm:

1. Find falling edge

of start bit

2. Wait half a bit

time

3. Sample

4. Wait full bit time

5. Repeat 3. and 4.

Implementation

Synthesized on an

Altera Cyclone II FPGA

(DE2 board)

Coded in VHDL

Runs at 50 MHz

Unpipelined

Uses on-chip memory

Conclusions

• Embedded applications need timing control

• RTOSes on modern processors too unpredictable

• We need hardware support

• High-performance processors with predictable timing

• Predictable performance our mantra

• A first cut: MIPS-like processor with timers

• 50 MHz on an Altera Cyclone II FPGA

• Dead instruction waits for timeout, then reloads

• Video controller 1/5 the size of VHDL

• Serial controller even simpler

	A Major Historical Event
	Another Major Historical Event
	The World as We Know It
	This Is Sometimes Useful For
	But Time Sometimes Matters
	Isn't Real-Time Scheduling Solved?
	Interrupt Latency and Response
	Jitter from Delaying for One Tick
	Worst-Case Execution Time
	State-of-the-art WCET
	Certification in Avionics
	The Problem
	Our Vision: PRET Machines
	Our Vision: PRET Machines
	Application Areas
	Basic Idea
	Basic Idea

	One Usual Way: Timers
	Or NOPs/cycle counting
	Related Work: Giotto
	Related Work: STI
	Related Work: VISA
	A First Attempt
	Programmer's Model
	Instructions
	Architecture
	Behavior of emph {Dead}
	Idioms: Straightline Code
	Idioms: Loops
	Case Study: Video
	Case Study: Video
	Case Study: Serial Receiver
	Implementation
	Conclusions

