
A Deterministic Concurrent Language for
Embedded Systems

Stephen A. Edwards

Columbia University

Joint work with Olivier Tardieu

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 1/28

Definition

shim \’shim\ n

1 : a thin often tapered piece of material (as wood, metal,

or stone) used to fill in space between things (as for

support, leveling, or adjustment of fit).

2 : Software/Hardware Integration Medium, a model for

describing hardware/software systems

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 2/28

Robby Roto

(Bally/Midway 1981)
SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 3/28

Robby Roto Block Diagram

Bus

Bridge
Z80

ROM

40K

SRAM

6K

NV SRAM

2K

blitter

Custom

Address

Custom

Data Video

Sound

I/O
Switches
Audio Left

Sound

I/O Audio Right

DRAM

16K

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 4/28

HW/SW Interaction

Software Blitter Memory Video

Interrupt

Interrupt

Blit

Blit

Blit

Pixels

Pixels

Pixels

Line

Line

Line

Line

Line

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 5/28

SHIM Wishlist

• Concurrent

Hardware always concurrent

• Mixes synchronous and asynchronous styles

Need multi-rate for hardware/software systems

• Only requires bounded resources

Hardware resources fundamentally bounded

• Formal semantics

Do not want arguments about what something means

• Scheduling-independent

Want the functionality of a program to be definitive

Always want simulated behavior to reflect reality

Verify functionality and performance separately
SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 6/28

The SHIM Model

Sequential processes

Unbuffered one-to-many

communication channels

exchange data tokens

Dynamic topology with an easily-defined static subset

Asynchronous

Synchronous communication events

Delay-insensitive: sequence of data through any channel

independent of scheduling policy (the Kahn principle)

“Kahn networks with rendezvous communication”

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 7/28

Basic SHIM

An imperative language with familiar C/Java-like syntax

int32 gcd(int32 a, int32 b)

{

while (a != b) {

if (a > b)

a ­= b;

else

b ­= a;

}

return a;

}

struct foo { // Composite types

int x;

bool y;

uint15 z; // Explicit-width integers

int<­3,5> w; // Explicit-range integers

int8 p[10]; // Arrays

bar q; // Recursive types

};

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 8/28

Three Additional Constructs

stmt1 par stmt2 Run stmt1 and stmt2 concurrently

send var Communicate on channel var

recv var

next var

try Define the scope of an exception
...

throw exc Raise an exception
...

catch(exc) stmt
SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 9/28

Concurrency & par

Par statements run concurrently and asynchronously

Terminate when all terminate

Each thread gets private copies of variables; no sharing

Writing thread sets the variable’s final value

void main() {

int a = 3, b = 7, c = 1;

{

a = a + c; // a← 4, b = 7, c = 1

a = a + b; // a← 11, b = 7, c = 1

} par {

b = b ­ c; // a = 3, b← 6, c = 1

b = b + a; // a = 3, b← 9, c = 1

}

// a← 11, b← 9, c = 1

}
SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 10/28

Restrictions

Both pass-by-reference and pass-by-value arguments

Simple syntactic rules avoid races

void f(int &x) { x = 1; } // x passed by reference

void g(int x) { x = 2; } // x passed by value

void main() {

int a = 0, b = 0;

a = 1; par b = a; // OK: a and b modified separately

a = 1; par a = 2; // Error: a modified by both

f(a); par f(b); // OK: a and b modified separately

f(a); par g(a); // OK: a modified by f only

g(a); par g(a); // OK: a not modified

f(a); par f(a); // Error: a passed by reference twice

}
SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 11/28

Communication

Blocking: thread waits for all processes that know about a

void f(chan int a) { // a is a copy of c

a = 3; // change local copy

recv a; // receive (wait for g)

// a now 5

}

void g(chan int &b) { // b is an alias of c

next b = 5; // sets c and send (wait for f)

// b now 5

}

void main() {

chan int c = 0;

f(c); par g(c);

}

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 12/28

Synchronization, Deadlocks

Blocking communication makes for potential deadlock

{ next a; next b; } par { next b; next a; } // deadlocks

Only threads responsible for a variable must synchronize

{ next a; next b; } par next b; par next a; // OK

When a thread terminates, it is no longer responsible

{ next a; next a; } par next a; // OK

Philosophy: deadlocks easy to detect; races are too subtle

SHIM prefers deadlocks to races (always reproducible)

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 13/28

An Example

void main() {

chan uint8 A, B, C;

{ // source: generate four values

next A = 17;

next A = 42;

next A = 157;

next A = 8;

} par { // buf1: copy from input to output

for (;;)

next B = next A;

} par { // buf2: copy, add 1 alternately

for (;;) {

next C = next B;

next C = next B + 1;

}

} par { // sink

for (;;)

recv C;

}

}

source buf1 buf2 sink

A B C

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 14/28

Message Sequence Chart

sender receiver
c=0

sink

d=1c=1
c=1
c=0

d=2
c=1
c=2
c=1
c=1
c=0

d=3
c=1
c=3
c=1
c=2
c=1
c=1
c=0

d=4

int a, b; chan int c, d;

{

d = 0;

for (;;) {

e = d;

while (e > 0) {

next c = 1;

next c = e;

e = e ­ 1;

}

next c = 0;

next d = d + 1;

}

} par {

a = b = 0;

for (;;) {

do {

if (next c != 0)

a = a + next c;

} while (c);

b = b + 1;

}

} par {

for (;;) recv d;

}
SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 15/28

Recursion & Concurrency

A bounded FIFO: compiler will analyze & expand

void buffer1(chan int in, chan int &out) {

for (;;) next out = next in;

}

void fifo(int n, chan int in,

chan int &out) {

if (n == 1)

buffer1(in, out);

else {

chan int channel;

buffer1(in, channel);

par

fifo(n­1, channel, out);

}

}

fifo(3,i,o)

buffer1(i,c) fifo(2,c,o)

buffer1(i,c) fifo(1,c,o)

buffer1(i,o)

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 16/28

Robby Roto in SHIM

Software Blitter

buffer

Video out

buffer

pixels

sync

Pixel Clock

frame

more

command

pixel

start-of-frame

while (player is alive)

next start-of-frame;

...game logic...

next more = true;

next command = ...;

...game logic...

next more = false;

for (;;)

while (next more)

next command;

Write to buffer

next frame = buffer;

for (;;)

next start-of-frame;

for each line

next sync = ...;

for each pixel

next clock

Read pixel

next pixel = ...;

buffer = next frame;
SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 17/28

Exceptions

Sequential semantics are classical

void main() {

int i = 1;

try {

throw T;

i = i * 2; // Not executed

} catch (T) {

i = i * 3; // Executed by throw T

}

// i = 3 on exit

}

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 18/28

Exceptions & Concurrency

void main() {

chan int i = 0, j = 0;

try {

while (i < 5)

next i = i + 1;

throw T;

} par {

for (;;) {

next j =

next i + 1;

}

} par {

for (;;)

recv j;

} catch (T) {}

}

Exceptions propagate through

communication actions to preserve

determinism

Idea: “transitive poisoning”

Raising an exception “poisons” a

process

Any process attempting to

communicate with a poisoned

process is itself poisoned (within

exception scope)

“Best effort preemption”
SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 19/28

Generating Software from SHIM

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 20/28

Static Scheduling

source buf1 buf2 sink

A B C

Build an automaton through abstract simulation

State signature:

• Running/blocked status of each process

• Blocked on reading/writing status of each channel

Trick: does not include control or data state of each process

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 21/28

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6, 8}

buf1

{3} {6, 8}

receive A

{2} {5, 6, 7, 8}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

{3} {5, 7}

send C

buf2

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 22/28

Benchmarks

Example Lines Processes

Berkeley 36 3

Buffer2 25 4

Buffer3 26 5

Buffer10 33 12

Esterel1 144 5

Esterel2 127 5

FIR5 78 19

FIR19 190 75

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 23/28

Executable Sizes

Example Switch Tail- Static (partial) Static (full)

Recursive size states size states

Berkeley 860 1299 1033 5 551 6

Buffer2 832 1345 1407 10 403 8

Buffer3 996 1579 1771 20 443 10

Buffer10 2128 3249 5823 174 687 24

Esterel1 3640 5971 8371 49 5611 56

Esterel2 4620 7303 6871 24 2539 18

FIR5 4420 6863 6819 229 1663 79

FIR19 17052 25967 67823 2819 7287 372

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 24/28

Speedups vs. Switch

Example Tail-Recursive Static (partial) Static (full)

Berkeley 2.9× 2.6 7.8

Buffer2 2.0 2.4 11

Buffer3 2.1 2.6 10

Buffer10 1.7 4.8 12

Esterel1 1.9 2.9 5.9

Esterel2 2.0 2.5 5.2

FIR5 0.92 4.8 7

FIR19 0.90 5.9 7.1

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 25/28

Conclusions

• The SHIM Model: Sequential processes

communicating through rendezvous

• Sequential language plus

• concurrency,

• communication, and

• exceptions.

• Scheduling-independent

• Kahn networks with rendezvous

• Nondeterministic scheduler produces deterministic

behavior

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 26/28

Future Work

• Automata abstract communication patterns

Useful for deadlock detection, protocol violation

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 27/28

Future Work

• Automata abstract communication patterns

Useful for deadlock detection, protocol violation

• Synthesis for multicore processors

Compile together the processes on each core

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 27/28

Future Work

• Automata abstract communication patterns

Useful for deadlock detection, protocol violation

• Synthesis for multicore processors

Compile together the processes on each core

• Hardware/software cosynthesis

Bounded subset has reasonable hardware semantics

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 27/28

Future Work

• Automata abstract communication patterns

Useful for deadlock detection, protocol violation

• Synthesis for multicore processors

Compile together the processes on each core

• Hardware/software cosynthesis

Bounded subset has reasonable hardware semantics

• Richer data structures

Shared arrays, Trees, etc.

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 27/28

Future Work

• Automata abstract communication patterns

Useful for deadlock detection, protocol violation

• Synthesis for multicore processors

Compile together the processes on each core

• Hardware/software cosynthesis

Bounded subset has reasonable hardware semantics

• Richer data structures

Shared arrays, Trees, etc.

• Convince world: scheduling-independent concurrency

is good

SHIM:A A Deterministic Concurrent Language for Embedded Systems – p. 27/28

	Definition
	Robby Roto
	Robby Roto Block Diagram
	HW/SW Interaction
	SHIM Wishlist
put [tl](4pc,2.5pc){includegraphics
[width=9pc]{blue-fairy-large.jpg}}
	The SHIM Model
	Basic SHIM
	Three Additional Constructs
	Concurrency & emph {par}
	Restrictions
	Communication
	Synchronization, Deadlocks
	An Example
	Message Sequence Chart
	Recursion & Concurrency
	Robby Roto in SHIM
	Exceptions
	Exceptions & Concurrency
	Static Scheduling
	Abstract Simulation
	Benchmarks
	Executable Sizes
	Speedups vs. Switch
	Conclusions
	Future Work
	Future Work
	Future Work
	Future Work
	Future Work

