
Verification Challenges in the SHIM
Concurrent Language

Stephen A. Edwards

Columbia University

Verification Challenges in the SHIM Concurrent Language – p. 1/20

Definition

shim \’shim\ n

1 : a thin often tapered piece of material (as wood, metal, or

stone) used to fill in space between things (as for support,

leveling, or adjustment of fit).

2 : Software/Hardware Integration Medium, a model for

describing hardware/software systems

Verification Challenges in the SHIM Concurrent Language – p. 2/20

The SHIM Wishlist

• Concurrent

Hardware always concurrent

• Mixes synchronous and asynchronous styles

Need multi-rate for hardware/software systems

• Only requires bounded resources

Hardware always bounded; simplifies verification

• Formal semantics

Clarifies verification problem; want to avoid arguments

• Scheduling-independent

Renders simulated behavior informative and definitive

Solves some verification problems “by theorem”

Verify functionality and performance separately

Verification Challenges in the SHIM Concurrent Language – p. 3/20

The SHIM Model

Sequential processes

Unbuffered one-to-many

communication channels

exchange data tokens

Dynamic topology with an easily-defined static subset

Asynchronous process execution rates

Blocking synchronous rendezvous communication

Scheduling-independent: sequence of data through any channel

independent of scheduling policy (the Kahn principle)

“Kahn networks with rendezvous communication”

Verification Challenges in the SHIM Concurrent Language – p. 4/20

The SHIM Language

An imperative language with familiar C/Java-like syntax

int32 gcd(int32 a, int32 b)

{

while (a != b) {

if (a > b)

a ­= b;

else

b ­= a;

}

return a;

}

struct foo { // Composite types

int x;

bool y;

uint15 z; // Explicit-width integers

int<­3,5> w; // Explicit-range integers

int8 p[10]; // Arrays

bar q; // Recursive types

};

Verification Challenges in the SHIM Concurrent Language – p. 5/20

Three Additional Constructs

stmt1 par stmt2 Run stmt1 and stmt2 concurrently

send var Communicate on channel var

recv var

next var

try Define the scope of an exception
...

throw exc Raise an exception
...

catch(exc) stmt

Verification Challenges in the SHIM Concurrent Language – p. 6/20

Concurrency & par

Par statements run concurrently and asynchronously

Terminate when all terminate

Each thread gets private copies of variables; no sharing

Writing thread sets the variable’s final value

void main() {

int a = 3, b = 7, c = 1;

{

a = a + c; // a← 4, b = 7, c = 1

a = a + b; // a← 11, b = 7, c = 1

} par {

b = b ­ c; // a = 3, b← 6, c = 1

b = b + a; // a = 3, b← 9, c = 1

}

// a← 11, b← 9, c = 1

}

Verification Challenges in the SHIM Concurrent Language – p. 7/20

Restrictions

Both pass-by-reference and pass-by-value arguments

Simple syntactic rules avoid races

void f(int &x) { x = 1; } // x passed by reference

void g(int x) { x = 2; } // x passed by value

void main() {

int a = 0, b = 0;

a = 1; par b = a; // OK: a and b modified separately

a = 1; par a = 2; // Error: a modified by both

f(a); par f(b); // OK: a and b modified separately

f(a); par g(a); // OK: a modified by f only

g(a); par g(a); // OK: a not modified

f(a); par f(a); // Error: a passed by reference twice

}

Verification Challenges in the SHIM Concurrent Language – p. 8/20

Communication

Blocking: wait for all processes connected to a

void f(chan int a) { // a is a copy of c

a = 3; // change local copy

recv a; // receive (wait for g)

// a now 5

}

void g(chan int &b) { // b is an alias of c

next b = 5; // sets c and send (wait for f)

// b now 5

}

void main() {

chan int c = 0;

f(c); par g(c);

}

Verification Challenges in the SHIM Concurrent Language – p. 9/20

Synchronization, Deadlocks

Blocking communication makes for potential deadlock

{ next a; next b; } par { next b; next a; } // deadlocks

Only threads responsible for a variable must synchronize

{ next a; next b; } par next b; par next a; // OK

When a thread terminates, it is no longer responsible

{ next a; next a; } par next a; // OK

Philosophy: deadlocks easy to detect; races are too subtle

SHIM prefers deadlocks to races (always reproducible)

Verification Challenges in the SHIM Concurrent Language – p. 10/20

An Example

void main() {

chan uint8 A, B, C;

{ // source: generate four values

next A = 17;

next A = 42;

next A = 157;

next A = 8;

} par { // buf1: copy from input to output

for (;;)

next B = next A;

} par { // buf2: copy, add 1 alternately

for (;;) {

next C = next B;

next C = next B + 1;

}

} par { // sink

for (;;)

recv C;

}

}

source buf1 buf2 sink

A B C

Verification Challenges in the SHIM Concurrent Language – p. 11/20

Recursion & Concurrency

A bounded FIFO: compiler analyzes & expands

void buffer1(chan int in, chan int &out) {

for (;;) next out = next in;

}

void fifo(int n, chan int in,

chan int &out) {

if (n == 1)

buffer1(in, out);

else {

chan int channel;

buffer1(in, channel);

par

fifo(n­1, channel, out);

}

}

fifo(3,i,o)

buffer1(i,c) fifo(2,c,o)

buffer1(i,c) fifo(1,c,o)

buffer1(i,o)

Verification Challenges in the SHIM Concurrent Language – p. 12/20

Exceptions

Sequential semantics are classical

void main() {

int i = 1;

try {

throw T;

i = i * 2; // Not executed

} catch (T) {

i = i * 3; // Executed by throw T

}

// i = 3 on exit

}

Verification Challenges in the SHIM Concurrent Language – p. 13/20

Exceptions & Concurrency

void main() {

chan int i = 0, j = 0;

try {

while (i < 5)

next i = i + 1;

throw T;

} par {

for (;;) {

next j =

next i + 1;

}

} par {

for (;;)

recv j;

} catch (T) {}

}

Exceptions propagate through

communication actions to preserve

determinism

Idea: “transitive poisoning”

Raising an exception “poisons” a

process

Any process attempting to

communicate with a poisoned process

is itself poisoned (within exception

scope)

“Best effort preemption”

Verification Challenges in the SHIM Concurrent Language – p. 14/20

SHIM Verification Challenges

• Can a particular program deadlock?

General answer is data-dependent

Many systems exhibit regular patterns

Verification Challenges in the SHIM Concurrent Language – p. 15/20

SHIM Verification Challenges

• Can a particular program deadlock?

General answer is data-dependent

Many systems exhibit regular patterns

• Can a program achieve a particular performance?

Related to worst-case execution time analysis

Complicated by communication behaviors

Precise answer depends on particular implementation

Verification Challenges in the SHIM Concurrent Language – p. 15/20

SHIM Verification Challenges

• Can a particular program deadlock?

General answer is data-dependent

Many systems exhibit regular patterns

• Can a program achieve a particular performance?

Related to worst-case execution time analysis

Complicated by communication behaviors

Precise answer depends on particular implementation

• Does a translation faithfully implement SHIM semantics?

Pthreads implementation nondeterministic

Many opportunities for inadvertant races

Verification Challenges in the SHIM Concurrent Language – p. 15/20

A Partial Evaluation Approach

source buf1 buf2 sink

A B C

Build an automaton through abstract simulation

State signature:

• Running/blocked status of each process

• Blocked on reading/writing status of each channel

Trick: does not include control or data state of each process

Verification Challenges in the SHIM Concurrent Language – p. 16/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

1

4

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

1

6

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

3

6

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

3

6

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {6}

buf1

2

6

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {6}

buf1

{2} {5}

buf2

2

5

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {6}

buf1

{2} {5}

buf2

{3} {5}

buf1

3

5

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {6}

buf1

{2} {5}

buf2

{3} {5}

buf1

{3} {5}

receive A

3

5

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {6}

buf1

{2} {5}

buf2

{3} {5}

buf1

{3} {5}

receive A

{2} {5}

buf1

2

5

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {5, 6}

buf1

{2} {5}

buf2

{3} {5}

buf1

{3} {5}

receive A

{2} {5}

buf1

send C

2

5

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {5, 6}

buf1

{2} {5, 7}

buf2

{3} {5}

buf1

{3} {5}

receive A

{2} {5}

buf1

send C

2

7

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {5, 6}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5}

receive A

{2} {5}

buf1

send C

3

7

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {5, 6}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5}

buf1

send C

3

7

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {5, 6}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

2

7

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {5, 6, 7}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

2

7

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {5, 6, 7}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

2

5

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6}

buf1

{3} {6}

receive A

{2} {5, 6, 7}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

{3} {5}

send C

3

5

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6, 8}

buf1

{3} {6}

receive A

{2} {5, 6, 7}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

{3} {5}

send C

buf2

3

8

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6, 8}

buf1

{3} {6, 8}

receive A

{2} {5, 6, 7}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

{3} {5}

send C

buf2

3

8

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6, 8}

buf1

{3} {6, 8}

receive A

{2} {5, 6, 7, 8}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

{3} {5}

send C

buf2

2

8

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6, 8}

buf1

{3} {6, 8}

receive A

{2} {5, 6, 7, 8}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

{3} {5, 7}

send C

buf2

3

7

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6, 8}

buf1

{3} {6, 8}

receive A

{2} {5, 6, 7, 8}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

{3} {5, 7}

send C

buf2

3

6

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Abstract Simulation

{ // buf1

1 for (;;)

2 next B = 3 next A;

} par { // buf2

4 for (;;) {

5 next C = 6 next B;

7 next C = 8 next B + 1;

}

}

{1} {4}

{1} {6}

buf2

{3} {6, 8}

buf1

{3} {6, 8}

receive A

{2} {5, 6, 7, 8}

buf1

{2} {5, 7}

buf2

{3} {5, 7}

buf1

{3} {5, 7}

receive A

{2} {5, 7}

buf1

send C

{3} {5, 7}

send C

buf2

{1, 2} {3}

buf1 ready

buf2 blocked

A clear
B waiting for reader

C waiting for writer

buf1 PCs

buf2 PCs

Verification Challenges in the SHIM Concurrent Language – p. 17/20

Experiments

Example Lines Processes States

Partial Full

Berkeley 36 3 5 6

Buffer2 25 4 10 8

Buffer3 26 5 20 10

Buffer10 33 12 174 24

Esterel1 144 5 49 56

Esterel2 127 5 24 18

FIR5 78 19 229 79

FIR19 190 75 2819 372

Verification Challenges in the SHIM Concurrent Language – p. 18/20

Conclusions

• The SHIM Model: Sequential processes communicating

through rendezvous

• Sequential language plus

• concurrency,

• communication, and

• exceptions.

• Scheduling-independent

• Kahn networks with rendezvous

• Nondeterministic scheduler produces deterministic

behavior

Verification Challenges in the SHIM Concurrent Language – p. 19/20

Future Work

• Automata abstract communication patterns

Useful for deadlock detection, protocol violation

Verification Challenges in the SHIM Concurrent Language – p. 20/20

Future Work

• Automata abstract communication patterns

Useful for deadlock detection, protocol violation

• Synthesis for multicore processors

Compile together the processes on each core

Verification Challenges in the SHIM Concurrent Language – p. 20/20

Future Work

• Automata abstract communication patterns

Useful for deadlock detection, protocol violation

• Synthesis for multicore processors

Compile together the processes on each core

• Hardware/software cosynthesis

Bounded subset has reasonable hardware semantics

Verification Challenges in the SHIM Concurrent Language – p. 20/20

Future Work

• Automata abstract communication patterns

Useful for deadlock detection, protocol violation

• Synthesis for multicore processors

Compile together the processes on each core

• Hardware/software cosynthesis

Bounded subset has reasonable hardware semantics

• Richer data structures

Shared arrays, Trees, etc.

Verification Challenges in the SHIM Concurrent Language – p. 20/20

Future Work

• Automata abstract communication patterns

Useful for deadlock detection, protocol violation

• Synthesis for multicore processors

Compile together the processes on each core

• Hardware/software cosynthesis

Bounded subset has reasonable hardware semantics

• Richer data structures

Shared arrays, Trees, etc.

• Convince world: scheduling-independent concurrency is

good

Verification Challenges in the SHIM Concurrent Language – p. 20/20

	Definition
	The SHIM Wishlist
put [tl](2pc,2.5pc){includegraphics
[width=9pc]{blue-fairy-large.jpg}}
	The SHIM Model
	The SHIM Language
	Three Additional Constructs
	Concurrency & emph {par}
	Restrictions
	Communication
	Synchronization, Deadlocks
	An Example
	Recursion & Concurrency
	Exceptions
	Exceptions & Concurrency
	SHIM Verification Challenges
	SHIM Verification Challenges
	SHIM Verification Challenges

	A Partial Evaluation Approach
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation
	Abstract Simulation

	Experiments
	Conclusions
	Future Work
	Future Work
	Future Work
	Future Work
	Future Work

