
Verification: What works and what does not?

Stephen A. Edwards

Columbia University

Verification: What works and what does not? – p. 1/5

Verification at Columbia

• Luca Carloni et al. model-checked some latency-insensitive

hardware blocks

Do they faithfully implement synchronous semantics?

Do they do so for all possible configurations?

• Steve Nowick et al. develop aynchronous hardware

components

Do they behave as advertised?

Are they as efficient as they claim?

• My SHIM language

I want static deadlock detection.

I want to verify my implementation obeys the semantics.

Verification: What works and what does not? – p. 2/5

Verification Successes and Failures

• Combinational equivalence

checking

• Type checking in

programming languages

• Model checking protocols

• SAT, BDDs

• Model checking real

hardware designs

• Automatic software

verification

• Theorem proving

Verification: What works and what does not? – p. 3/5

How do we get to “cc -V 2”?

Aren’t we already there?

% gcc ­Wall foo.c

% valgrind ­­tool=memcheck hello

% javac Hello.java

% ocamlc hello.ml

Programmers expect tools to behave like compilers

O(n log n) or die

Verification: What works and what does not? – p. 4/5

The $24,000 question

What language constructs would

make today’s and tomorrow’s

verification algorithms practical?

Verification: What works and what does not? – p. 5/5

	Verification at Columbia
	Verification Successes and Failures
	How do we get to ``cc -V 2''?
	The $24,000 question

