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Verification at Columbia

• Luca Carloni et al. model-checked some latency-insensitive

hardware blocks

Do they faithfully implement synchronous semantics?

Do they do so for all possible configurations?

• Steve Nowick et al. develop aynchronous hardware

components

Do they behave as advertised?

Are they as efficient as they claim?

• My SHIM language

I want static deadlock detection.

I want to verify my implementation obeys the semantics.
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Verification Successes and Failures

• Combinational equivalence

checking

• Type checking in

programming languages

• Model checking protocols

• SAT, BDDs

• Model checking real

hardware designs

• Automatic software

verification

• Theorem proving
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How do we get to “cc -V 2”?

Aren’t we already there?

% gcc ­Wall foo.c

% valgrind ­­tool=memcheck hello

% javac Hello.java

% ocamlc hello.ml

Programmers expect tools to behave like compilers

O(n log n) or die
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The $24,000 question

What language constructs would

make today’s and tomorrow’s

verification algorithms practical?
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