
Precision-Timed (PRET)

Machines

Stephen A. Edwards

Columbia University

Edward A. Lee

University of California, Berkeley

Precision-Timed (PRET) Machines – p. 1/19

A Major Historical Event

In 1980, Patterson and Ditzel did

not invent reduced instruction set

computers (RISC machines).

D. A. Patterson and D. R. Ditzel, “The case for the reduced instruction

set computer,” ACM SIGARCH Computer Architecture News,

8(6):25-33, Oct. 1980.

Precision-Timed (PRET) Machines – p. 2/19

Another Major Historical Event

In 2006, Lee and Edwards did not

invent reduced precision-timed

computers (PRET machines).

S. A. Edwards and E. A. Lee, “The Case for the Precision Timed (PRET)

Machine,” EECS Department, University of California, Berkeley,

Technical Report No. UCB/EECS-2006-149, November 17, 2006.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-149.html
Precision-Timed (PRET) Machines – p. 3/19

The World as We Know It

We do not consider

how fast a processor

runs when we evaluate

whether it is “correct.”

Salvador Dali, The Persistence of Memory,

1931. (detail) Precision-Timed (PRET) Machines – p. 4/19

This Is Sometimes Useful For

• Programming languages

• Virtual memory

• Caches
• Dynamic dispatch

• Speculative execution

• Power management (voltage scaling)

• Memory management (garbage collection)

• Just-in-time (JIT) compilation

• Multitasking (threads and processes)

• Component technologies (OO design)

• Networking (TCP)

Precision-Timed (PRET) Machines – p. 5/19

But Time Sometimes Matters

Kevin Harvick winning the Daytona 500 by 20 ms, February 2007. (Source: Reuters)

Precision-Timed (PRET) Machines – p. 6/19

Certification in Avionics

• Rather expensive

• Software is not certified

• Entire system is certified

• Slight change, e.g., in

the microprocessor,

requires recertification

• Solution: stockpile

parts; trust nobody
(Source: NASA)

Precision-Timed (PRET) Machines – p. 7/19

Worst-Case Execution Time

Virtually impossible to compute on modern processors.

Feature Nearby Distant Memory

instructions instructions layout

Pipelines
√

Branch Prediction
√ √

Caches
√ √ √

Precision-Timed (PRET) Machines – p. 8/19

State-of-the-art WCET

• Motorola ColdFire

• Two coupled pipelines (7-stage)

• Shared instruction & data cache

• Artificial example from Airbus

• Twelve independent tasks

• Simple control structures

• Cache/Pipeline interaction leads

to large integer linear

programming problem

IAG

�
addr (a)

�

wait

IC1

�
await (a)

�

wait

IC2

�
put (a)

�

wait

IED

�
instr

�

wait

IB

�
start

�
�

�
�

��

�

�

next

EX

�
store

�

wait

SST

�

�

�

�cancel

cancel

cancel

cancel �

�

�set (a) / stop

set (a) / stop

�

�fetch (a)
�

hold

� code (a)

�read (A) / write (A)
�

data / hold

B

U

S

U

N

I

T

C. Ferdinand et al., “Reliable and

precise WCET determination for a

real-life processor,” EMSOFT 2001

Precision-Timed (PRET) Machines – p. 9/19

The Problem

Digital hardware provides extremely precise timing

20.000 MHz (± 100 ppm)

and architectural complexity discards it.

Precision-Timed (PRET) Machines – p. 10/19

Our Vision: PRET Machines

PREcision-Timed processors: Performance & Predicability

+ = PRET

(Image: John Harrison’s H4, first clock to solve longitude problem)

Precision-Timed (PRET) Machines – p. 11/19

Our Vision: PRET Machines

Predictable performance, not just good average case

Current Alternative

Caches Scratchpads

Pipelines Thread-interleaved pipelines

Function-only ISAs ISAs with timing

Function-only languages Languages with timing

Data Races Deterministic concurrency

Best-effort communication Fixed-latency communication

Precision-Timed (PRET) Machines – p. 12/19

Related Work: Giotto

Giotto [Henzinger, Horowitz, Kirsch, Proc. IEEE 2003]

The RTOS style: specify a collection of tasks and modes.

Compiler produces schedule (task priorities).

Precision limited by periodic timer interrupt.

mode forward() period 200 {

actfreq 1 do leftJet(leftMotor);

actfreq 1 do rightJet(rightMotor);

exitfreq 1 do point(goPoint);

exitfreq 1 do idle(goIdle);

exitfreq 1 do rotate(goRotate);

taskfreq 2 do errorTask(getPos);

taskfreq 1 do forwardTask(getErr);

}

Precision-Timed (PRET) Machines – p. 13/19

Related Work: STI

RT Guest

Thread

Existing

Thread

Integrated

Thread

Idle

Time

Hardware

Function

Software Thread Integration

[Dean, RTSS 1998]

Insert code for a

non-real-time thread into a

real-time thread.

Pad the rest with NOPs

Often creates code explosion

Requires predictable

processor; he uses AVRs

Precision-Timed (PRET) Machines – p. 14/19

Related Work: VISA

VISA [Meuller et al., ISCA 2003]

Run two processors:

• Slow and predictable

• Fast and unpredictable

Start tasks on both.

If fast completes first, use extra time.

If fast misses a checkpoint, switch over to slow.

Precision-Timed (PRET) Machines – p. 15/19

A First Attempt

16-bit MIPS-like processor augmented with timers

One additional “deadline” instruction:

dead timer, timeout

Wait until timer expires, then reload it with timeout.

Nicholas Ip and Stephen A. Edwards, “A Processor Extension for Cycle-Accurate Real-Time

Software,” Proceedings of EUC, Seoul, Korea, August 2006.

Precision-Timed (PRET) Machines – p. 16/19

Case Study: Video

80 × 30 text-mode display, 25 MHz pixel clock

Shift register in hardware; everything else in software

Char.
Data
2.5K

Font
Data
1.5K

Control

Shift Register

VSYNCHSYNC

Video

BLANKLoad
/Shift

Precision-Timed (PRET) Machines – p. 17/19

Case Study: Video
movi $2, 0 ; reset line address

row:
movi $7, 0 ; reset line in char

line:
deadi $t1, 96 ; h. sync period
movi $14, HS+HB
ori $3, $7, FONT ; font base address
deadi $t1, 48 ; back porch period
movi $14, HB
deadi $t1, 640 ; active video period
mov $1, 0 ; column number

char:
lb $5, ($2+$1) ; load character
shli $5, $5, 4 ; *16 = lines/char
deadi $t0, 8 ; wait for next character
lb $14, ($5+$3) ; fetch and emit pixels
addi $1, $1, 1 ; next column
bne $1, $11, char
deadi $t1, 16 ; front porch period
movi $14, HB
addi $7, $7, 1 ; next row in char
bne $7, $13, line ; repeat until bottom
addi $2, $2, 80 ; next line
bne $2, $12, row ; until at end

Two nested loops:

• Active line

• Character

Two timers:

• $t1 for line timing

• $t0 for character output

78 lines of assembly replaces

450 lines of VHDL (1/5th)

Precision-Timed (PRET) Machines – p. 18/19

Conclusions

• Embedded applications need timing control

• We need hardware support

• High-performance processors with predictable timing

• Predictable performance our mantra

• A first cut: MIPS-like processor with timers

• Dead instruction waits for timeout, then reloads

• Video controller 1/5 the size of VHDL

Precision-Timed (PRET) Machines – p. 19/19

	A Major Historical Event
	mbox {Another Major Historical Event}
	The World as We Know It
	This Is Sometimes Useful For
	mbox {But Time Sometimes Matters}
	Certification in Avionics
	Worst-Case Execution Time
	State-of-the-art WCET
	The Problem
	Our Vision: PRET Machines
	Our Vision: PRET Machines
	Related Work: Giotto
	Related Work: STI
	Related Work: VISA
	A First Attempt
	Case Study: Video
	Case Study: Video
	Conclusions

