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Results (Papers)

Shannon decomposition plus retiming
Soviani, Tardieu, & Edwards, DATE 2006

High-level synthesis for router pipelines
Soviani, Hadžić, & Edwards, DAC 2006 (submitted)

More efficient “decyclification” algorithm
Neiroukh, Edwards, & Song, ISVLSI 2006

Separate compilation for Esterel (software)
Zeng & Edwards, ICESS 2005

Approximate Esterel reachability (formal)
Tardieu & Edwards, ATVA 2005

An Esterel virtual machine for small memories
Plummer, Khajanchi, & Edwards, SLAP 2006
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Results (Software)

The Columbia Esterel Compiler

http://www1.cs.columbia.edu/˜sedwards/cec/

V5-compliant open-source Esterel compiler

Backends for C, Verilog, BLIF, and VHDL

Written in C++

Source and Linux binaries available
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Verilog More Verbose Than Esterel

case (cur_state) // synopsys parallel_case
IDLE: begin

if (pcsu_powerdown & !jmp_e &
!valid_diag_window) begin

next_state = STANDBY_PWR_DN;
end
else if (valid_diag_window | ibuf_full |

jmp_e) begin
next_state = cur_state;
end
else if(icu_miss&!cacheable) begin
next_state = NC_REQ_STATE ;
end
else if (icu_miss&cacheable) begin
next_state = REQ_STATE;
end
else next_state = cur_state ;

end

NC_REQ_STATE: begin
if(normal_ack| error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE: begin
if (normal_ack) begin
next_state = FILL_2ND_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_2ND_WD: begin
if(normal_ack) begin
next_state = REQ_STATE2;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE2: begin
if(normal_ack) begin
next_state = FILL_4TH_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_4TH_WD: begin
if(normal_ack| error_ack) begin
next_state = IDLE;
end
else next_state = cur_state ;

end

STANDBY_PWR_DN: begin
if(!pcsu_powerdown | jmp_e ) begin
next_state = IDLE;
end
else next_state = STANDBY_PWR_DN;

end

default: next_state = 7’bx;

endcase

loop
await
case [icu_miss and

not cacheable] do
await [normal_ack or error_ack]

end
case [icu_miss and

cacheable] do
abort
await 4 normal_ack;

when error_ack
end
case [pcsu_powerdown and

not jmp_e and
not valid_diag_window] do

await [pcsu_powerdown and
not jmp_e]

end
end;
pause

end
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Why is Esterel More Succinct?

Verilog:
REQ_STATE2: begin

if(normal_ack) begin
next_state = FILL_4TH_WD;

end
else if (error_ack) begin

next_state = IDLE ;
end
else next_state = cur_state;

end

Esterel:
abort

await normal_ack
when error_ack

Esterel provides cross-clock control-flow

State machine logic represented implicitly

Higher-level constructs like await
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Shannon and Retiming

Cristian Soviani, Olivier Tardieu, and Stephen A.
Edwards.

Optimizing Sequential Cycles through Shannon
Decomposition and Retiming.

Proceedings of Design Automation and Test in
Europe (DATE).

Munich, Germany, March 2006.
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Motivating Example
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Treat Shannon as a Covering Problem
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Treat Shannon as a Covering Problem
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Considering Node Variants
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Considering Node Variants
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Pruning Node Variants
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Best Solution
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Results on ISCAS89 Benchmarks

reference retimed Sh. + ret. time speed area

period area period area period area (s) up penalty

s510 8 184 8 184 8 184 0.5

s641 11 115 11 115 9 122 1.1 22% 6%

s713 11 118 11 118 10 121 0.9 10% 3%

s820 7 206 7 206 7 206 0.5

s832 7 217 7 217 7 217 0.4

s838 10 154 10 154 8 162 2.6 25% 5%

s1196 9 365 9 365 9 365 0.6

s1423 24 408 21 408 13 460 3.8 61% 12%

s1488 6 453 6 453 6 453 0.7

s1494 6 456 6 456 6 456 0.8

s9234 11 662 8 656 8 684 6.7

s13207 14 1382 11 1356 9 1416 18.0 22% 4%

s38417 14 7706 14 7652 13 7871 113 7% 3%
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Synthesizing Pipelines

Cristian Soviani, Ilija Hadžić, and Stephen A.
Edwards.

Synthesis of High-Performance Packet
Processing Pipelines.

Submitted to the Design Automation Conference
(DAC).

San Francisco, California, July 2006.
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Packet Switch Architecture
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Typical Packet Pipeline

from
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Packet Editing Graph

– p. 18/37



Block Up into 64-bit Words
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Add Cycle Boundaries and Delays

RTL synthesis
straightforward
from here

Able to
achieve 40 GB/s on
an FPGA: as good
as by hand

Much easier than
hand-coding RTL

Tool handles
tedious
bookkeeping, FSM
synthesis
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Dycyclifying Circuits

Osama Neiroukh, Stephen A. Edwards, and
Xiaoyu Song.

An Efficient Algorithm for the Analysis of Cyclic
Circuits.

Proceedings of the International Symposium on
VLSI (ISVLSI).

Karlsruhe, Germany, March 2006.
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Example
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Example

1: Apply controlling values
Assignment Frontier At Frontier Acyclic

{a = 0} {} √

{b = 0} {V } R = 0

{c = 0} {V } U = 0

{d = 1} {V } U = 0

{e = 0} {Z} W = 1

{f = 1} {Z} X = 1

{g = 0} {Z} Y = 1

{g = 1} {Z} X = 1

2: Merge to “break logjams”
Gate Assignment Frontier Acyclic

V {b = 0, c = 0} {} √

V {b = 0, d = 1} {} √

Z {e = 0, f = 1, g = 0} {} √

g

e

fa

b

c

d

Z

Y

Q S

R

T

V X

W

U

Result:
{a = 0}
{b = 0, c = 0}
{b = 0, d = 1}
{e = 0, f = 1, g = 0}
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Experimental Results

Circuit Netlist SCC [Edwards 03] New Acyclic
Gates Gates PAs

PAs time PAs time
arbiter5 213 25 257 1.3 25 0.1 14
arbiter6 248 30 745 8 29 0.1 16
arbiter7 283 35 2205 69 33 0.2 18
arbiter8 318 40 6581 656 37 0.3 20
exp 124 69 54517 2868 23260 2 338
ex1 150 47 43777 2341 232 1 10
gary 177 32 - - 290 0.6 11
planet 253 51 - - 1489 0.3 22
s1488 272 61 - - 588 0.2 89
table3 311 49 - - 3604 1 38

Much faster than the DAC 2003 paper’s algorithm
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Separate Compilation for Esterel

Jia Zeng and Stephen A. Edwards.

Separate Compilation of Synchronous Modules.

Proceedings of the 2nd International Conference
on Embedded Software and Systems (ICESS).

Xian, China, December 2005.
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The Separate Compilation Challenge

Connecting two synchronous blocks tricky: in
what order should they be simulated?

A B

Our solution: compile A and B such that they
respond to “don’t know yet” inputs.
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Convert If-Else to If-Else-Don’t-Know
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Experimental Results

Example Lines Average cycle times
Esterel V5 SCFG 3-Valued

comexp 88 1.67s 0.61s 0.80s
iwls3 70 1.04s 0.35s 0.26s
3vsim2 48 0.68s 0.32s 0.46s
multi3 120 1.39s 0.45s 0.47s

Shows the cost of adding code that handles the
“don’t-know” case is reasonable.
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Approximate Reachability for Esterel

Olivier Tardieu and Stephen A. Edwards.

Approximate Reachability for Dead Code
Elimination in Esterel*.

In Proceedings of the Third International
Symposium on Automated Technology for
Verification and Analysis (ATVA).

Taipei, Taiwan, October 2005.
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An Esterel Virtual Machine

Becky Plummer, Mukul Khajanchi, and Stephen
A. Edwards.

An Esterel Virtual Machine for Embedded
Systems.

In Proceedings of Synchronous Lanugages,
Applications, and Programming (SLAP).

Vienna, Austria, March 2006.
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An Esterel Virtual Machine

Goal: software code generation for small
embedded systems.

Basic idea: trade speed for program size by
building a language-specific virtual machine.

Contributions: instruction-level support for
concurrency, mating code synthesis algorithm.
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Experimental Results

Code sizes (percentage saved by VM):
Example BAL x86 H8
dacexample 369 917 60% 842 57%
abcd 870 2988 71% 2648 68%
greycounter 1289 3571 64% 2836 55%
tcint 5667 11486 51% 10074 51%
atds-100 10481 38165 73% 26334 60%

Execution Speeds (slowdown due to VM):
Example x86 BAL
dacexample 0.06µs 1.1µs 18×
tcint 0.28µs 1.1µs 4×
atds-100 0.20µs 1.4µs 7×
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