
High Level Synthesis from the
Synchronous Language Esterel 1068.003

Raising the level of abstraction above RTL

Prof. Stephen A. Edwards

Students: Cristian Soviani, Jia Zeng (2007?)

Mike Kishinevsky, Intel

– p. 1/37

Results (Papers)

Shannon decomposition plus retiming
Soviani, Tardieu, & Edwards, DATE 2006

High-level synthesis for router pipelines
Soviani, Hadžić, & Edwards, DAC 2006 (submitted)

More efficient “decyclification” algorithm
Neiroukh, Edwards, & Song, ISVLSI 2006

Separate compilation for Esterel (software)
Zeng & Edwards, ICESS 2005

Approximate Esterel reachability (formal)
Tardieu & Edwards, ATVA 2005

An Esterel virtual machine for small memories
Plummer, Khajanchi, & Edwards, SLAP 2006

– p. 2/37

Results (Software)

The Columbia Esterel Compiler

http://www1.cs.columbia.edu/˜sedwards/cec/

V5-compliant open-source Esterel compiler

Backends for C, Verilog, BLIF, and VHDL

Written in C++

Source and Linux binaries available

– p. 3/37

Verilog More Verbose Than Esterel

case (cur_state) // synopsys parallel_case
IDLE: begin

if (pcsu_powerdown & !jmp_e &
!valid_diag_window) begin

next_state = STANDBY_PWR_DN;
end
else if (valid_diag_window | ibuf_full |

jmp_e) begin
next_state = cur_state;
end
else if(icu_miss&!cacheable) begin
next_state = NC_REQ_STATE ;
end
else if (icu_miss&cacheable) begin
next_state = REQ_STATE;
end
else next_state = cur_state ;

end

NC_REQ_STATE: begin
if(normal_ack| error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE: begin
if (normal_ack) begin
next_state = FILL_2ND_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_2ND_WD: begin
if(normal_ack) begin
next_state = REQ_STATE2;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

REQ_STATE2: begin
if(normal_ack) begin
next_state = FILL_4TH_WD;
end
else if (error_ack) begin
next_state = IDLE ;
end
else next_state = cur_state ;

end

FILL_4TH_WD: begin
if(normal_ack| error_ack) begin
next_state = IDLE;
end
else next_state = cur_state ;

end

STANDBY_PWR_DN: begin
if(!pcsu_powerdown | jmp_e) begin
next_state = IDLE;
end
else next_state = STANDBY_PWR_DN;

end

default: next_state = 7’bx;

endcase

loop
await
case [icu_miss and

not cacheable] do
await [normal_ack or error_ack]

end
case [icu_miss and

cacheable] do
abort
await 4 normal_ack;

when error_ack
end
case [pcsu_powerdown and

not jmp_e and
not valid_diag_window] do

await [pcsu_powerdown and
not jmp_e]

end
end;
pause

end

– p. 4/37

Why is Esterel More Succinct?

Verilog:
REQ_STATE2: begin

if(normal_ack) begin
next_state = FILL_4TH_WD;

end
else if (error_ack) begin

next_state = IDLE ;
end
else next_state = cur_state;

end

Esterel:
abort

await normal_ack
when error_ack

Esterel provides cross-clock control-flow

State machine logic represented implicitly

Higher-level constructs like await

– p. 5/37

Shannon and Retiming

Cristian Soviani, Olivier Tardieu, and Stephen A.
Edwards.

Optimizing Sequential Cycles through Shannon
Decomposition and Retiming.

Proceedings of Design Automation and Test in
Europe (DATE).

Munich, Germany, March 2006.

– p. 6/37

Motivating Example

8

f

x1
x2
x3
x4

y

Period: 8

Shannon

f

f

0

1

0

1

8 1

x1
x2
x3
x4

y

Period: 9

Retime

Tight feedback loop
improved by
combining the two
techniques

0

1

0

1

x1
x2
x3
x4

y

Period: 2.25

12.25 2.25 2.25 1.25

– p. 7/37

Treat Shannon as a Covering Problem

f

g

h

i

unchanged

Shannon with as sel

Shannon with as sel

1

0

1

00

1

0

1

f
f

f

f

f

f

f

f

f

unchanged
Shannon start Shannon stop Shannon extend Shannon

– p. 8/37

Treat Shannon as a Covering Problem

0

1

0

1

0

0

1

1

f

g

g

h

h

i

i

unchanged

Shannon

start Shannon
stop Shannon

1

0

1

00

1

0

1

f
f

f

f

f

f

f

f

f

unchanged
Shannon start Shannon stop Shannon extend Shannon

– p. 9/37

Considering Node Variants

0

0

3

4

2

2

10

11

14

7

2

3

8

(10,10,14)f

6

11

g

g

1

h

h

0

1

1

0

1

00

1

0

1

f
f

f

f

f

f

f

f

f

unchanged
Shannon start Shannon stop Shannon extend Shannon

– p. 10/37

Considering Node Variants

0

0

3

4

2

2

10

11

14

7

2

3

8

(15)f

6

11

g

g

11

h

h

0

0

1

1

1

0

1

00

1

0

1

f
f

f

f

f

f

f

f

f

unchanged
Shannon start Shannon stop Shannon extend Shannon

– p. 11/37

Pruning Node Variants

minimum

2

10

11

6

7

2

3

5

2

fat(f) = (14)(13,13,11)

fat(g) = (8)(7,7,7)

fat(h) = (15)(10,10,14)

fat(i) = (15) (14,14,14)

arrival time
output

f

g

h

i

(16) (16,16,6) (17) (16,16,8) (17)

(10,10,14) (15) (16,16,7)

(17) (15,15,11) (16)

PRUNING

1

0

1

00

1

0

1

f
f

f

f

f

f

f

f

f

unchanged
Shannon start Shannon stop Shannon extend Shannon

– p. 12/37

Best Solution

0

1

0

1

0

0

1

1

f

g

g

h

h

i

i

3

2

10

11

6

7

2

5

2

14

8

(10,10,14)

15

1

0

1

00

1

0

1

f
f

f

f

f

f

f

f

f

unchanged
Shannon start Shannon stop Shannon extend Shannon

– p. 13/37

Results on ISCAS89 Benchmarks

reference retimed Sh. + ret. time speed area

period area period area period area (s) up penalty

s510 8 184 8 184 8 184 0.5

s641 11 115 11 115 9 122 1.1 22% 6%

s713 11 118 11 118 10 121 0.9 10% 3%

s820 7 206 7 206 7 206 0.5

s832 7 217 7 217 7 217 0.4

s838 10 154 10 154 8 162 2.6 25% 5%

s1196 9 365 9 365 9 365 0.6

s1423 24 408 21 408 13 460 3.8 61% 12%

s1488 6 453 6 453 6 453 0.7

s1494 6 456 6 456 6 456 0.8

s9234 11 662 8 656 8 684 6.7

s13207 14 1382 11 1356 9 1416 18.0 22% 4%

s38417 14 7706 14 7652 13 7871 113 7% 3%

– p. 14/37

Synthesizing Pipelines

Cristian Soviani, Ilija Hadžić, and Stephen A.
Edwards.

Synthesis of High-Performance Packet
Processing Pipelines.

Submitted to the Design Automation Conference
(DAC).

San Francisco, California, July 2006.

– p. 15/37

Packet Switch Architecture

Line Card

Ingress
Packet

Processor

Ingress
Traffic

Manager

Egress
Packet

Processor

Egress
Traffic

Manager

Switching
Fabric

– p. 16/37

Typical Packet Pipeline

from
fabric

VLAN
pop

VLAN
push

MPLS
push

TTL
update

ARP
resolve

to
network

memory
lookup

memory
lookup

– p. 17/37

Packet Editing Graph

– p. 18/37

Block Up into 64-bit Words

– p. 19/37

Add Cycle Boundaries and Delays

RTL synthesis
straightforward
from here

Able to
achieve 40 GB/s on
an FPGA: as good
as by hand

Much easier than
hand-coding RTL

Tool handles
tedious
bookkeeping, FSM
synthesis

– p. 20/37

Dycyclifying Circuits

Osama Neiroukh, Stephen A. Edwards, and
Xiaoyu Song.

An Efficient Algorithm for the Analysis of Cyclic
Circuits.

Proceedings of the International Symposium on
VLSI (ISVLSI).

Karlsruhe, Germany, March 2006.

– p. 21/37

Example

g

e

fa

b

c

d

Z

Y

Q S

R

T

V X

W

U

– p. 22/37

Example

1: Apply controlling values
Assignment Frontier At Frontier Acyclic

{a = 0} {} √

{b = 0} {V } R = 0

{c = 0} {V } U = 0

{d = 1} {V } U = 0

{e = 0} {Z} W = 1

{f = 1} {Z} X = 1

{g = 0} {Z} Y = 1

{g = 1} {Z} X = 1

2: Merge to “break logjams”
Gate Assignment Frontier Acyclic

V {b = 0, c = 0} {} √

V {b = 0, d = 1} {} √

Z {e = 0, f = 1, g = 0} {} √

g

e

fa

b

c

d

Z

Y

Q S

R

T

V X

W

U

Result:
{a = 0}
{b = 0, c = 0}
{b = 0, d = 1}
{e = 0, f = 1, g = 0}

– p. 23/37

Experimental Results

Circuit Netlist SCC [Edwards 03] New Acyclic
Gates Gates PAs

PAs time PAs time
arbiter5 213 25 257 1.3 25 0.1 14
arbiter6 248 30 745 8 29 0.1 16
arbiter7 283 35 2205 69 33 0.2 18
arbiter8 318 40 6581 656 37 0.3 20
exp 124 69 54517 2868 23260 2 338
ex1 150 47 43777 2341 232 1 10
gary 177 32 - - 290 0.6 11
planet 253 51 - - 1489 0.3 22
s1488 272 61 - - 588 0.2 89
table3 311 49 - - 3604 1 38

Much faster than the DAC 2003 paper’s algorithm

– p. 24/37

Separate Compilation for Esterel

Jia Zeng and Stephen A. Edwards.

Separate Compilation of Synchronous Modules.

Proceedings of the 2nd International Conference
on Embedded Software and Systems (ICESS).

Xian, China, December 2005.

– p. 25/37

The Separate Compilation Challenge

Connecting two synchronous blocks tricky: in
what order should they be simulated?

A B

Our solution: compile A and B such that they
respond to “don’t know yet” inputs.

– p. 26/37

Convert If-Else to If-Else-Don’t-Know

E=1

1

E=1

1

B

0

C

D

0

E

F=1

0 1

A

B

E=1E=0E

F=0F=1F=0

E=1

D

B

E=1

C

A

E=0 C

F=0 D

E

F=0

B

E=0

– p. 27/37

Experimental Results

Example Lines Average cycle times
Esterel V5 SCFG 3-Valued

comexp 88 1.67s 0.61s 0.80s
iwls3 70 1.04s 0.35s 0.26s
3vsim2 48 0.68s 0.32s 0.46s
multi3 120 1.39s 0.45s 0.47s

Shows the cost of adding code that handles the
“don’t-know” case is reasonable.

– p. 28/37

Approximate Reachability for Esterel

Olivier Tardieu and Stephen A. Edwards.

Approximate Reachability for Dead Code
Elimination in Esterel*.

In Proceedings of the Third International
Symposium on Automated Technology for
Verification and Analysis (ATVA).

Taipei, Taiwan, October 2005.

– p. 29/37

An Esterel Virtual Machine

Becky Plummer, Mukul Khajanchi, and Stephen
A. Edwards.

An Esterel Virtual Machine for Embedded
Systems.

In Proceedings of Synchronous Lanugages,
Applications, and Programming (SLAP).

Vienna, Austria, March 2006.

– p. 30/37

An Esterel Virtual Machine

Goal: software code generation for small
embedded systems.

Basic idea: trade speed for program size by
building a language-specific virtual machine.

Contributions: instruction-level support for
concurrency, mating code synthesis algorithm.

– p. 31/37

Experimental Results

Code sizes (percentage saved by VM):
Example BAL x86 H8
dacexample 369 917 60% 842 57%
abcd 870 2988 71% 2648 68%
greycounter 1289 3571 64% 2836 55%
tcint 5667 11486 51% 10074 51%
atds-100 10481 38165 73% 26334 60%

Execution Speeds (slowdown due to VM):
Example x86 BAL
dacexample 0.06µs 1.1µs 18×
tcint 0.28µs 1.1µs 4×
atds-100 0.20µs 1.4µs 7×

– p. 32/37

Publications 1

Cristian Soviani, Ilija Hadžić, and Stephen A. Edwards.
Synthesis of High-Performance Packet Processing Pipelines.
Submitted to the Design Automation Conference (DAC), San
Francisco, California, July 2006.

Osama Neiroukh, Stephen A. Edwards, and Xioyu Song.
An efficient algorithm for the analysis of cyclic circuits.
In Proceedings of the Symposium on VLSI (ISVLSI), Karlsruhe,
Germany, March 2006.

Cristian Soviani, Olivier Tardieu, and Stephen A. Edwards.
Optimizing Sequential Cycles through Shannon Decomposition
and Retiming.
In Proceedings of Design Automation and Test in Europe
(DATE), Munich, Germany, March 2006.

– p. 33/37

Publications 2

Jia Zeng and Stephen A. Edwards.
Separate Compilation of Synchronous Modules.
In Proceedings of the 2nd International Conference on
Embedded Software and Systems (ICESS), Xian, China,
December 2005.

Olivier Tardieu and Stephen A. Edwards.
Approximate Reachability for Dead Code Elimination in Esterel*.
In Proceedings of the Third International Symposium on
Automated Technology for Verification and Analysis (ATVA),
Taipei, Taiwan, October 2005.

Becky Plummer, Mukul Khajanchi, and Stephen A. Edwards.
An Esterel Virtual Machine for Embedded Systems.
In Proceedings of Synchronous Lanugages, Applications, and
Programming (SLAP).
Vienna, Austria, March 2006. – p. 34/37

Publications 3

Stephen A. Edwards and Olivier Tardieu.
SHIM: A Deterministic Model for Heterogeneous Embedded
Systems.
In Proceedings of the ACM Conference on Embedded Software
(Emsoft), Jersey City, NJ, September 2005.

Stephen A. Edwards and Olivier Tardieu.
Deterministic Receptive Processes are Kahn Processes.
In Proceedings of the 3rd International Conference on Formal
Methods and Models for Codesign (MEMOCODE), Verona, Italy,
July 2005.

Cristian Soviani and Stephen A. Edwards.
Challenges in Synthesizing Fast Control-Dominated Circuits.
In Proceedings of the International Workshop on Logic and
Synthesis (IWLS), Lake Arrowhead, California, June, 2005.

– p. 35/37

Publications 4

Stephen A. Edwards.
SHIM: A Language for Hardware/Software Integration.
In Proceedings of Synchronous Languages, Applications, and
Programming (SLAP), Edinburgh, Scotland, April 2005.

Stephen A. Edwards.
The challenges of hardware synthesis from C-like langauges.
In Proceedings of Design Automation and Test in Europe
(DATE), Munich, Germany, March 2005.

Jia Zeng, Cristian Soviani, and Stephen A. Edwards.
Generating Fast Code from Concurrent Program Dependence
Graphs.
In Proceedings of the ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES), Washington, DC, June 2004.

– p. 36/37

Publications 5

Stephen A. Edwards, Vimal Kapadia, and Michael Halas.
Compiling Esterel into Static Discrete-Event Code.
In Proceedings of Synchronous Languages, Applications, and
Programming (SLAP 2004). Barcelona, Spain, March 28, 2004.

Stephen A. Edwards.
Making Cyclic Circuits Acyclic.
In Proceedings of the 40th Design Automation Conference (DAC
2003). Anaheim, California, June 2-6, 2003. pp. 159-162.

Stephen A. Edwards.
Compiling Concurrent Languages for Sequential Processors.
ACM Transactions on Design Automation of Electronic Systems
(TODAES) 8(2):141-187, April 2003.

– p. 37/37

	�egin {tabular}[t]{@{}l@{}}High Level Synthesis from the\ Synchronous Language Esterel {�ootnotesize 1068.003}end {tabular}
	Results (Papers)
	Results (Software)
	Verilog More Verbose Than Esterel
	Why is Esterel More Succinct?
	Shannon and Retiming
	Motivating Example
	Treat Shannon as a Covering Problem
	Treat Shannon as a Covering Problem
	Considering Node Variants
	Considering Node Variants
	Pruning Node Variants
	Best Solution
	Results on ISCAS89 Benchmarks
	Synthesizing Pipelines
	Packet Switch Architecture
	Typical Packet Pipeline
	Packet Editing Graph
	Block Up into 64-bit Words
	Add Cycle Boundaries and Delays
	Dycyclifying Circuits
	Example
	Example
	Experimental Results
	Separate Compilation for Esterel
	The Separate Compilation Challenge
	Convert If-Else to If-Else-Don't-Know
	Experimental Results
	Approximate Reachability for Esterel
	An Esterel Virtual Machine
	An Esterel Virtual Machine
	Experimental Results
	Publications 1
	Publications 2
	Publications 3
	Publications 4
	Publications 5

