
An Esterel Virtual Machine for
Embedded Systems

Becky Plummer Mukul Khajanchi Stephen A. Edwards

Columbia University

An Esterel Virtual Machine for Embedded Systems – p. 1/44

An Esterel Virtual Machine

Goal: Run big Esterel
programs in
memory-constrained
settings.

Our target: the
Hitachi H8-based
RCX Microcontroller
for Lego Mindstorms

An Esterel Virtual Machine for Embedded Systems – p. 2/44

An Example

module Example:
input I, S;
output O;
signal R,A in

every S do
await I;
weak abort

sustain R
when immediate A;
emit O

||
loop

pause; pause;
present R then

emit A
end present

end loop
end every

end signal
end module

s1

s3

0

1

0

1

s6

0

s16

1

*

0

1

2

0

s10

1

*

0 1

0 1

1

s3=0

s1=0

s1

1

s1=0

0

S

s3

s3=1

P

s3=0

0

s3=1

1

s6

0

s16

1

s6=0

0

s6=1

1 I

2

s16=0

1

R

0

0

s6=1

P

s6=2

1

11

1

O

3

1 01 3

1

3

113

R

0

A

1R

0

s10

1

s10=1s10=0

P

A

s16=1

A

P

s10=0

0

1

Ps10=1

s6=2

0

s16=1

1

1 1

1

An Esterel Virtual Machine for Embedded Systems – p. 3/44

Challenges

Esterel’s semantics require any implementation
to deal with three issues:

• Concurrent execution of sequential threads of
control within a cycle

• The scheduling constraints among these
threads due to communication dependencies

• How control state is updated between cycles

An Esterel Virtual Machine for Embedded Systems – p. 4/44

How did we handle them?

• A virtual machine specifically designed to
support Esterel features

• A sequentializing algorithm

• Conversion from GRC to BAL and then to a
compact byte code

An Esterel Virtual Machine for Embedded Systems – p. 5/44

Phase 1: Schedule

Schedule
1

2 3

4

An Esterel Virtual Machine for Embedded Systems – p. 6/44

Phase 2: Assign Threads

1

2 3

4

Assign

Threads
1

2 3

4

0

0 1

0

An Esterel Virtual Machine for Embedded Systems – p. 7/44

Phase 3: Sequentialize

1

2 3

4

0

0 1

0

Sequentialize

�0

1

2

×1
�

4

�1

3

×0

An Esterel Virtual Machine for Embedded Systems – p. 8/44

Phase 4: Add Labels

�0

1

2

×1

�

4
�1

3

×0

Add Labels
�0

1

2

×1

�

4

�1

3

jmp done

case 1

done

×0

An Esterel Virtual Machine for Embedded Systems – p. 9/44

Phase 5: Convert to BAL�0

1

2

×1

�

4
�1

3

jmp done

case 1

done

×0

Convert

to BAL

t0
STHR 1 t1
EMT 1
SWC 1
STHR 1 NR1
END

NR1
SWCU

t1
TWB 2 2 case_1
JMP done

case_1
done

SWC 0

An Esterel Virtual Machine for Embedded Systems – p. 10/44

Phase 6: Convert to Byte Code

t0
STHR 1 t1
EMT 1
SWC 1
STHR 1 NR1
END

NR1
SWCU

t1
TWB 2 2 case_1
JMP done

case_1
done

SWC 0

Convert

to

byte code

07 01 00 0e
04 01
05 01
07 01 00 0d
03

0c

49 02 00 15
06 00 15

05 00

An Esterel Virtual Machine for Embedded Systems – p. 11/44

Sequential Code Generation

1. Schedule the nodes in the graph

2. Assign thread numbers

3. Sequentialize the graph

4. Set the execution path by adding labels

5. Convert to BAL

6. Assemble to produce bytecode

An Esterel Virtual Machine for Embedded Systems – p. 12/44

Sequentialization

An Esterel Virtual Machine for Embedded Systems – p. 13/44

Sequentialization

�0
F

1

2 3

4

The dotted line labeled F

represents the frontier. The

frontier starts at the top of

the graph.

An Esterel Virtual Machine for Embedded Systems – p. 14/44

Sequentialization

�0 �1

F

1

2 3

4

The frontier moves down a

node at a time in scheduled

order.

An Esterel Virtual Machine for Embedded Systems – p. 15/44

Sequentialization

�0 �1

F

1

2

3

4

When a node is in the same

thread as the most recently

moved one, it is simply

moved above the frontier.

An Esterel Virtual Machine for Embedded Systems – p. 16/44

Sequentialization

�0

× �

�

1

F

1

2

3

4

However, when the next

node is from a different

thread, a switch is added to

the previous thread and an

active point is added to the

new thread just above the

just-moved node.

An Esterel Virtual Machine for Embedded Systems – p. 17/44

Sequentialization

�0

1

2

×1

F

�

4
�1

3

×0

The algorithm is complete

when the frontier has swept

across all nodes in

scheduled order.

An Esterel Virtual Machine for Embedded Systems – p. 18/44

Sequentializing Algorithm
1: for each thread t in G do
2: create new active point p
3: copy first node n of t in G to n′ new node in G′

4: connect p and n′

5: add p to P [t] and add n′ to A[t]
6: t′ = the first thread
7: for each node n in scheduled order do
8: t is thread of n
9: if t 6= t′ then

10: for each parent p in P [t′] do
11: for each successor c of p in A[t′] do
12: create switch node s from t′ to t and connect s between p and c
13: replace P [t′] with the set of new switch nodes
14: move n to P [t] and remove it from A[t]
15: for each unreached successor c of n do
16: copy c to c′ new node in G′

17: if n is a fork then
18: add child to A[thread of c]
19: else
20: add child to A[t]
21: t′ = t {remember the last thread}

An Esterel Virtual Machine for Embedded Systems – p. 19/44

Why VM?

• Goal: constrained-memory environment

• Instruction set has direct support for Esterel
constructs like concurrency, preemption, and
signals

• E.g., a context switch can be specified in just
two bytes

An Esterel Virtual Machine for Embedded Systems – p. 20/44

VM Details

An Esterel Virtual Machine for Embedded Systems – p. 21/44

VM Details

• Signal status registers

• Completion code registers

• Per-thread program counters

• Inter-instant state-holding registers

An Esterel Virtual Machine for Embedded Systems – p. 22/44

VM: Signal, State, and Thread

Opcode Description Encoding
EMT Emit a Signal 04 RR
SSIG Clear Signal 0A RR
SSTT Set State 0B RR VV
STHR Set Thread 07 TT HH LL

An Esterel Virtual Machine for Embedded Systems – p. 23/44

VM: Control Flow Instructions

Opcode Description Encoding
END Tick End 03
JMP Jump 06 HH LL
NOP No Operation 01

An Esterel Virtual Machine for Embedded Systems – p. 24/44

VM: Branch, Switch, Terminate

Opcode Description Encoding

MWB
Multiway Branch (State) 2D NL RR HH2 LL2 ...

Multiway Branch (Comp.) 4D NL RR HH2 LL2 ...

TWB

Two Way Branch (State) 29 RR HH LL

Two Way Branch (Signal) 49 RR HH LL

Two Way Branch (Comp.) 69 RR HH LL

SWC Switch Thread 05 TT

SWCU Switch Unknown 0C

TRM Set Completion Code 08 RR VV

for Join
An Esterel Virtual Machine for Embedded Systems – p. 25/44

VM: Context Switch

...
switch(opcode & 0x1F){

...
case SWC:

// Increment the program counter
++pc;
// Store the current thread as the last thread
last_thread = current_thread;
// Get the next thread
current_thread = *pc;
// Increment the program counter
++pc;
// Store old pc associated with the old thread
threads[last_thread] = pc;
// Load the pc associated with the new thread
pc = threads[current_thread];
break;

...

An Esterel Virtual Machine for Embedded Systems – p. 26/44

VM: Switch Unknown

...
case SWCU:

// Make the thread stored in last_thread, the current thread
temp = current_thread;
current_thread = last_thread;
last_thread = temp;
// Store old pc
threads[last_thread] = pc;
// Load new pc
pc = threads[current_thread];
break;

...

An Esterel Virtual Machine for Embedded Systems – p. 27/44

VM in action

An Esterel Virtual Machine for Embedded Systems – p. 28/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 0

last_thread = 0

Threads Signals

0

0

0

0

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 29/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 4

last_thread = 0

Threads Signals

0

16

0

0

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 30/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 6

last_thread = 0

Threads Signals

0

16

0

1

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 31/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 16

last_thread = 0

Threads Signals

8

16

0

1

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 32/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 19

last_thread = 0

Threads Signals

8

16

0

1

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 33/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 22

last_thread = 0

Threads Signals

8

16

0

1

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 34/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 8

last_thread = 1

Threads Signals

8

24

0

1

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 35/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 12

last_thread = 1

Threads Signals

8

15

0

1

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 36/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 15

last_thread = 0

Threads Signals

14

15

0

1

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 37/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 14

last_thread = 1

Threads Signals

14

15

0

1

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 38/44

VM in action

t0
00: STHR 1 t1
04: EMT 1
06: SWC 1
08: STHR 1 NR1
12: SWC 1
14: END

NR1
15: SWCU

t1
16: TWB 2 1 case_1
19: JMP done

case_1
done

22: SWC 0

pc = 15

last_thread = 0

Threads Signals

15

15

0

1

States Joins

.. ..

An Esterel Virtual Machine for Embedded Systems – p. 39/44

The engineering details

• brickOS 2.6.10 on Redhat Linux

• gcc cross compiler 4.0.2. for H8300

• Download lx files to the lego RCX via USB IR
tower

An Esterel Virtual Machine for Embedded Systems – p. 40/44

Code Sizes

Example BAL x86 H8
dacexample 369 917 60% 842 57%
abcd 870 2988 71% 2648 68%
greycounter 1289 3571 64% 2836 55%
tcint 5667 11486 51% 10074 51%
atds-100 10481 38165 73% 26334 60%

BAL: the size of our bytecode (in bytes)
x86: the size of optimized C code for an x86
H8: the size of optimized C code for an Hitachi H8
Percentages represent the size savings of using bytecode.

An Esterel Virtual Machine for Embedded Systems – p. 41/44

Execution Times

Example x86 BAL
dacexample 0.06µs 1.1µs 18×

tcint 0.28µs 1.1µs 4×

atds-100 0.20µs 1.4µs 7×

An Esterel Virtual Machine for Embedded Systems – p. 42/44

Future Work

• Arithmetic Support

• Support for externally-called functions

An Esterel Virtual Machine for Embedded Systems – p. 43/44

Conclusions

• Simple Virtual Machine

• Compilation scheme statically schedules the
concurrent behavior and generates
straight-line code for each thread

• VM supports context-switching well

• Bytecode for our virtual machine is roughly
half the size of optimized native assembly
code generated from C

• Speed tradeoff not that bad! Between 4 and 7
times slower than optimized C code

An Esterel Virtual Machine for Embedded Systems – p. 44/44

	An Esterel Virtual Machine
	An Example
	Challenges
	How did we handle them?
	Phase 1: Schedule
	Phase 2: Assign Threads
	Phase 3: Sequentialize
	Phase 4: Add Labels
	Phase 5: Convert to BAL
	Phase 6: Convert to Byte Code
	Sequential Code Generation
	Sequentialization
	Sequentialization
	Sequentialization
	Sequentialization
	Sequentialization
	Sequentialization
	Sequentializing Algorithm
	Why VM?
	VM Details
	VM Details
	VM: Signal, State, and Thread
	VM: Control Flow Instructions
	VM: Branch, Switch, Terminate
	VM: Context Switch
	VM: Switch Unknown
	VM in action
	VM in action
	VM in action
	VM in action
	VM in action
	VM in action
	VM in action
	VM in action
	VM in action
	VM in action
	VM in action
	VM in action
	The engineering details
	Code Sizes
	Execution Times
	Future Work
	Conclusions

