An Efficient Algorithm for the Analysis of Cyclic Circuits

Osama Neiroukh Stephen A. Edwards Xiaoyu Song Intel Columbia University Portland State University

An Efficient Algorithm for the Analysis of Cyclic Circuits – p. 1/

What is a Combinational Circuit?

Malik [ICCAD 93]: "A circuit is combinational *for an input pattern* if three-valued simulation starting from Xs converges to 0s and 1s."

Shiple [96]: "Equivalent to stability in Brzozowski and Seger's [95] model."

Goal

Given a cyclic circuit that is combinational for some inputs, create an acyclic circuit that computes the same combinational function.

Applications

Fixing cyclic circuits from high-level synthesis Stok [ICCAD 92]: cycles from resource sharing Berry [92]: cycles from Esterel programs Acyclic circuits easier to simulate

Related Work

Malik [ICCAD 93]: basic definitions, unrolling Edwards [DAC 03]: basis of our work Gupta and Selvidge [ICCAD 05]: fix single loops Riedel [DAC 03]: a technique for creating them

An Efficient Algorithm for the Analysis of Cyclic Circuits – p. 6/

An Efficient Algorithm for the Analysis of Cyclic Circuits - p. 6/

An Efficient Algorithm for the Analysis of Cyclic Circuits - p. 6/

An Efficient Algorithm for the Analysis of Cyclic Circuits – p. 6/1

First Observation [Edwards 2003]

For an input pattern to be combinational, at least one input coming from outside each strongly-connected component must have a controlling value.

If all external inputs were non-controlling, the gates in the SCC would stay at X.

An Efficient Algorithm for the Analysis of Cyclic Circuits - p. 8/1

An Efficient Algorithm for the Analysis of Cyclic Circuits - p. 8/1

Frontier gate: some inputs defined, output remains X

An Efficient Algorithm for the Analysis of Cyclic Circuits – p. 8/1

Frontier gate: some inputs defined, output remains X

Input is combinational \Leftrightarrow frontier is empty

An Efficient Algorithm for the Analysis of Cyclic Circuits – p. 8/

Our Algorithm Step 1: Apply a Controlling Value to Each Input

Our Algorithm Step 1: Apply a Controlling Value to Each Input

a = 0 acyclic

An Efficient Algorithm for the Analysis of Cyclic Circuits - p. 9/

a = 0 acyclic

b = 0

An Efficient Algorithm for the Analysis of Cyclic Circuits – p. 9/

Our Algorithm Step 1: Apply a Controlling Value to Each Input

a = 0 acyclic

An Efficient Algorithm for the Analysis of Cyclic Circuits – p. 9/

Our Algorithm Step 1: Apply a Controlling Value to Each Input

a = 0 acyclic

An Efficient Algorithm for the Analysis of Cyclic Circuits – p. 9/

Our Algorithm Step 1: Apply a Controlling Value to Each Input

a = 0 acyclic d = 1 0

b = 0

 $\mathbf{c} = \mathbf{0}$

An Efficient Algorithm for the Analysis of Cyclic Circuits - p. 9

Our Algorithm Step 1: Apply a Controlling Value to Each Input

 $d = 1_0 - V$ a = 0 acyclic e = 0b = 0Ζ f = 1 $\mathbf{C} = \mathbf{0}$ Ζ

 $g = 0 \begin{array}{c} 1 \end{array} = \begin{bmatrix} z \\ z \end{bmatrix}$ $g = 1 \begin{array}{c} 1 \end{array} = \begin{bmatrix} z \\ z \end{bmatrix}$

An Efficient Algorithm for the Analysis of Cyclic Circuits - p. 9/

Our Algorithm Step 2: Attack Frontier Gates with Combinations

 $b = 0 \quad 0 \quad v \quad + \quad c = 0 \quad 0 \quad v \quad + \quad c = 0 \quad 0 \quad v \quad + \quad c = 0 \quad 0 \quad v \quad - \quad v \quad$

An Efficient Algorithm for the Analysis of Cyclic Circuits - p. 10/

Our Algorithm Step 2: Attack Frontier Gates with Combinations

- + c = 0 0 - + d = 1 0 b = 0b = 0

An Efficient Algorithm for the Analysis of Cyclic Circuits - p. 10/

Our Algorithm Step 2: Attack Frontier Gates with Combinations

 $b = 0 \quad 0 \quad V \quad + \quad c = 0 \quad 0 \quad V \quad + \quad d = 1 \quad 0 \quad V \quad + \quad d = 1 \quad 0 \quad V \quad + \quad d = 1 \quad 0 \quad V \quad + \quad g = 0 \quad 1 \quad z \quad + \quad f = 1 \quad 1 \quad z \quad + \quad g = 0 \quad 1 \quad z \quad + \quad z \quad = \quad z \quad$

An Efficient Algorithm for the Analysis of Cyclic Circuits - p. 10/2

Experimental Results

Netlist	SCC	DAC 03		Ours		Acyclic
Gates	Gates	PAs	time	PAs	time	PAs
213	25	257	1.3	25	0.1	14
248	30	745	8	29	0.1	16
283	35	2205	69	33	0.2	18
318	40	6581	656	37	0.3	20
124	69	54517	2868	23260	2.0	338
150	47	43777	2341	232	1.0	10
177	32		∞	290	0.6	11
253	51		∞	1489	0.3	22
272	61		∞	588	0.2	89
311	49		∞	3604	1.0	38
	Netlist Gates 213 248 283 318 124 150 177 253 272 311	NetlistSCCGatesGates21325248302833531840124691504717732253512726131149	NetlistSCCDACGatesGatesPAs213252572483074528335220531840658112469545171504743777177321272611311491	NetlistSCCDAC \cup 3GatesGatesPAstime213252571.3248307458283352205693184065816561246954517286815047743777234117732 ∞ 25351 ∞ 27261 ∞ 31149 ∞	NetlistSCCDAC \cup 3OuGatesGatesPAstimePAs213252571.3252483074582928335220569333184065816563712469545172868232601504743777234123217732 ∞ 29025351 ∞ 148927261 ∞ 58831149 ∞ 3604	NetlistSCC $DAC \cdot 03$ $Ou \cdot s$ GatesGatesPAstimePAstime213252571.3250.1248307458290.128335220569330.2318406581656370.312469545172868232602.0150474377723412321.017732 ∞ ∞ 14890.327261 ∞ 5880.231149 ∞ 3604 1.0

Conclusions

- More focused exploration of search space
- Idea: combine partial assignments to attack frontier gates
- Exponential improvement compared to Edwards [DAC 03]
- Future work
 - Even better pruning
 - Symbolic approach?