
SHIM: A Deterministic Model for
Heterogeneous Embedded Systems

Stephen A. Edwards and Olivier Tardieu

Department of Computer Science,
Columbia University

www.cs.columbia.edu/˜sedwards

{sedwards,tardieu}@cs.columbia.edu

Definition

shim \’shim\ n

1 : a thin often tapered piece of material (as wood, metal,
or stone) used to fill in space between things (as for
support, leveling, or adjustment of fit).

2 : Software/Hardware Integration Medium, a model for
describing hardware/software systems

Robby Roto (Bally/Midway, 1981)

Robby Roto Block Diagram

Z80

ROM
40K

SRAM
6K

NV SRAM
2K

blitter

Bus Bridge
(Mux)

Custom
Address

Custom
Data Video

Sound
I/O

Switches
Audio Left

Sound
I/O Audio Right

DRAM
16K

HW/SW Interaction
Software Blitter Memory Video

Interrupt

Interrupt

Blit

Blit

Blit

Pixels

Pixels

Pixels

Line

Line

Line

Line

Line

SHIM Wishlist

• Mixes synchronous and asynchronous styles
Need multi-rate for hardware/software systems

• Delay-insensitive (Deterministic)
Want simulated behavior to reflect reality
Verify functionality and performance separately

• Only requires bounded resources
Hardware resources fundamentally bounded

• Formal semantics
Do not want arguments about what something means

Deterministic, Concurrent MoCs

Not too many:

The Synchronous Model Bad for multi-rate and
asynchronous behavior

The Lambda Calculus Unbounded in general, not
obvious in hardware

Kahn Networks Unbounded in general, difficult
to schedule

Idea: Restrict Kahn to be bounded.

The SHIM Model

Kahn networks with rendezvous communication

Sequential processes
Unbuffered point-to-point

communication channels
exchange data tokens

Fixed communication topology

Fundamentally asynchronous

Each communication event is synchronous (like a clock)

Delay-insensitive: sequence of data through any channel
is independent of scheduling policy (the Kahn principle)

Tiny-SHIM Processes

Local variables: d, e
d = 0;
while (1) {

e = d;
while (e > 0) {

write(c, 1);
write(c, e);
e = e - 1;

}
write(c, 0);
d = d + 1;

}

Local variables: a, b, r, v
a = 0;
b = 0;
while (1) {

r = 1;
while (r) {

read(c, r);
if (r != 0) {

read(c, v);
a = a + v;

}
}
b = b + 1;

}

c

Behavior of the Processes
sender receiverC=0 sink

D=1C=1
C=1
C=0

D=2
C=1
C=2
C=1
C=1
C=0

D=3
C=1
C=3
C=1
C=2
C=1
C=1
C=0

D=4

d = 0;
while (1) {

e = d;
while (e > 0) {

write(c, 1);
write(c, e);
e = e - 1;

}
write(c, 0);
d = d + 1;

}

a = 0;
b = 0;
while (1) {

r = 1;
while (r) {

read(c, r);
if (r != 0) {

read(c, v);
a = a + v;

}
}
b = b + 1;

}

Robby Roto in SHIM: Block Diagram

Software Blit

buffer

Video out

buffer
pixels
sync

Pixel Clock

frame
end-of-frame

command
pixels

start-of-frame

while the player is alive do
Wait for start-of-frame
...game logic...
Write “false” to end-of-frame
Write to the blitter
...game logic...
Write “true” to end-of-frame

while 1 do
while not end-of-frame do

Read blit command
Write pixels to memory

Write frame

while 1 do
Write start-of-frame
for each line do

Emit line timing signals
for each pixel do

Wait for pixel clock
Read pixel from memory
Send pixel to display

Read next frame

The Syntax of Tiny-SHIM

e ::= L (literal)
| V (variable)
| op e (unary op)
| e op e (binary op)
| (e) (paren)

s ::= V = e (assignment)
| if (e) s else s (conditional)
| while (e) s (loop)
| s ; s (sequencing)
| read(C, V) (blocking read)
| write(C, e) (blocking write)
| { s } (grouping)

The SOS Semantics of Tiny-SHIM

σ Process memory state p Process code
〈σ, p〉 Process p in state σ 〈σ〉 Terminated in state σ
a
−→ Single-process rule ⇒ System rule
E(σ, e) Value of e in σ

E(σ, e) = n

〈σ, v = e〉 → 〈σ[v ← n]〉
(assign)

E(σ, e) 6= 0

〈σ, if (e) p else q〉 → 〈σ, p〉
(if-true)

E(σ, e) = 0

〈σ,if (e) p else q〉 → 〈σ, q〉
(if-false)

Semantics of Looping & Sequencing

E(σ, e) 6= 0

〈σ, while (e) p〉 → 〈σ, p ; while (e) p〉
(while-true)

E(σ, e) = 0

〈σ, while (e) p〉 → 〈σ〉
(while-false)

〈σ, p〉
a
→ 〈σ′, p′〉

〈σ, p ; q〉
a
→ 〈σ′, p′ ; q〉

(seq)

〈σ, p〉
a
→ 〈σ′〉

〈σ, p ; q〉
a
→ 〈σ′, q〉

(seq-term)

Communication and Concurrency

〈σ, read(c, v)〉 c get n
−−−−−→ 〈σ[v ← n]〉 (read)

E(σ, e) = n

〈σ, write(c, e)〉 c put n
−−−−−→ 〈σ〉

(write)

〈σ, p〉 → s

{〈σ, p〉}] S ⇒ {s}] S
(step)

〈σ, p〉
c put n
−−−−−→ s 〈σ′, p′〉

c get n
−−−−−→ s′

{〈σ, p〉 , 〈σ′, p′〉}] S ⇒ {s, s′}] S
(sync)

Translating Tiny-SHIM to Hardware
CFG
Node

Control
Fragment

Datapath
Fragment

Assignment v = e e

Decision
e

e

Merge

Cycle
Boundary . . .

Translation Patterns

if (e) s1 else s2

e
s2 s1

while (e) s

e

s

write(c, e) read(c, v)
c = e v = c

Translation

a = 0

b = 0

1

r = 1

r

r = c

r

v = c

a += v

b += 1

d = 0

1

e = d

e

c = 1

c = e

e −= 1

c = 0

d −= 1

d = 0;
while (1) {

e = d;
while (e > 0) {

write(c, 1);
write(c, e);
e = e - 1;

}
write(c, 0);
d = d + 1;

}

a = 0;
b = 0;
while (1) {

r = 1;
while (r) {

read(c, r);
if (r != 0) {

read(c, v);
a = a + v;

}
}
b = b + 1;

}

Summary

• SHIM: A delay-insensitive (deterministic) model of
computation that supports synchrony and asynchrony

• Tiny-SHIM: A little language that embodies the model

• Formal operational semantics of Tiny-SHIM

• A procedure for translating Tiny-SHIM into hardware

Ongoing Work

• Translation into software

• Relaxation of block-on-single-channel rule

• Complete hardware/software design language

• Translation optimization for hardware and software

