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The Status Quo: Memory as Buffer
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/O Becoming Faster than CPUs
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Our Idea: Flows Controlled by OS
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Like a modern router’s control & data plane
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Layers

Typical e.g., sendfil e() ours




Abstract Server Model
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Signaling AP

Need some sort of mechanism for creating, controlling,
and tearing down flows, e.qg.,

flow = fl ow open

();

fl ow _source(flow, "/usr/http/secretfile.htm");
fl ow xforner(flow, "/dev/crypto");
flow xformer(flow, "/dev/http");

flow sink(fl ow,
flow start(fl ow)
flow stop(flow);

"/dev/inet/192.168.1. 3");



Exception Handling

What happens if something goes wrong?
 OS may try to re-start device
e Redirect to a different device
e Error passed to application
e Switch to all-software flow

e Terminate



Resource Scheduler

What If two processes want access to /dev/crypto?
e Performance requirements
e Available resources
* Priorities

Flow-level scheduling costly, but infrequent

Detailed (e.g., bus access) scheduling more frequent



Programmable Peripherals
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FPGASs: flow components or

wrappers around legacy peripherals (DMA absorbers)




Proof-of-Concept System
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Experimental Results

Time to send 1 Million packets through the pipeline

Packet Memory- Flow- Speed-up
size centric centric*

64 bytes 15.5s 13.6 13%

1024 bytes 114 59.2 49%

*Plus main processor mostly idle for these packets



Conclusions

New flow-centric architecture for operating systems

Have the OS manage inter-peripheral flows under
application control

Requires programmable peripherals: many already extant
Proof-of-concept showed nearly a 2x speedup

Minimal performance impact from additional computations
(e.g., security)



