Adding a Flow-Oriented Paradigm
to Commodity Operating Systems

Cristian Soviani, Stephen A. Edwards,
and Angelos Keromytis

Department of Computer Science,
Columbia University in the City of New York

{soviani,sedwards,angelos} @cs.columbia.edu

The Status Quo: Memory as Buffer

TR
. l~"

Web %

i

Server ;

MPEG
encoder

D

Crypto
Accelerator

\

Main memory

Memory-1/O bus (e.g., PCI)

Network
Interface

+

Network

/O Becoming Faster than CPUs

S10/0]0)

4500 Memory Bus Speed s .
4000 |

3500 |
3000 |
N
I 2500 |
>
2000
1500 |
1000 |
500 |

() I I— PTTTTTTTTTTTT I PTTLLLIIT PELTTTTIT T UL LLLLLLLCLET pre

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004
Year

CPU and Memory speeds

(Source: Intel)

Our Idea: Flows Controlled by OS

c'~

“‘\ "*:, N\

™. OS Kernel
Web 5

Server

§'~

\'~ - - - - -
“snan=n? FlOow Initialization

Main memory

FPGA board

S \ S \

Accelerator

Crypto

J

JPEG encoding
+

IPsec processing

Like a modern router’s control & data plane

Network
Interface

+

Network

Layers

Typical e.g., sendfil e() ours

Abstract Server Model

Sources Transformers Sinks

o
S

MPEG
encode

MPEG

decode

Signaling AP

Need some sort of mechanism for creating, controlling,
and tearing down flows, e.qg.,

flow = fl ow open

();

fl ow _source(flow, "/usr/http/secretfile.htm");
fl ow xforner(flow, "/dev/crypto");
flow xformer(flow, "/dev/http");

flow sink(fl ow,
flow start(fl ow)
flow stop(flow);

"/dev/inet/192.168.1. 3");

Exception Handling

What happens if something goes wrong?
 OS may try to re-start device
e Redirect to a different device
e Error passed to application
e Switch to all-software flow

e Terminate

Resource Scheduler

What If two processes want access to /dev/crypto?
e Performance requirements
e Available resources
* Priorities

Flow-level scheduling costly, but infrequent

Detailed (e.g., bus access) scheduling more frequent

Programmable Peripherals

| T

e T e e

R

311 SR) B
7 PR X
HAR e S

RadiSys ENP-2611 Altera Stratix PCI
Network Card w/ IXP2400

FPGASs: flow components or

wrappers around legacy peripherals (DMA absorbers)

Proof-of-Concept System

system CPU
SRAM 16kB
main system
memory
CPUO General purpose peripherals
off - chip
Interrupt USER JTAG VGA 2MB
- en o ZBT SRAM
1€ controller 110 UART controller
S S S S S
i M e e e e e e e e e
= r I R — - =1
arbiter Tp l
3 I | 3
| W | W
NICCPU Im s] ops | CRYPTO |m_s| ors | HDCcPU |m_s| orB | sNiccpu m_s]l ops
bridge CPU bridge bridge I bridge
s | s | s | s
s| skB ' s| skB | s| skB | s| skB
dual ported | dual ported l dual ported dual ported
SRAM | SRAM SRAM l SRAM
private | : private l | private private
SRAM 8kB S CirCUitry SRAM 8kB S CirCUitry SRAM 8kB S CirCUitry J SRAM 8kB S CirCUitry

NIC device CRYPTO device HDC device SNIC device

Experimental Results

Time to send 1 Million packets through the pipeline

Packet Memory- Flow- Speed-up
size centric centric*

64 bytes 15.5s 13.6 13%

1024 bytes 114 59.2 49%

*Plus main processor mostly idle for these packets

Conclusions

New flow-centric architecture for operating systems

Have the OS manage inter-peripheral flows under
application control

Requires programmable peripherals: many already extant
Proof-of-concept showed nearly a 2x speedup

Minimal performance impact from additional computations
(e.g., security)

