
Adding a Flow-Oriented Paradigm
to Commodity Operating Systems

Cristian Soviani, Stephen A. Edwards,
and Angelos Keromytis

Department of Computer Science,
Columbia University in the City of New York

{soviani,sedwards,angelos}@cs.columbia.edu



The Status Quo: Memory as Buffer

Memory−I/O bus (e.g., PCI)

Main memory

Web

Server

DATA

OS Kernel

Hard
Disk

MPEG
encoder Accelerator

Crypto Network

Interface

Network



I/O Becoming Faster than CPUs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

M
H

z

Year

CPU Speed
Memory Bus Speed

CPU and Memory speeds

(Source: Intel)



Our Idea: Flows Controlled by OS

Like a modern router’s control & data plane

Flow initialization

Main memory

Web

Server

OS Kernel

Hard
Disk Accelerator

Crypto Network

Interface

Network

Memory−I/O bus (e.g., PCI)

FPGA board

JPEG encoding

IPsec processing
+



Layers

HW

Kernel

User

Typical

HW

Kernel

User

e.g., sendfile()

HW

Kernel

User

Ours



Abstract Server Model

Sources Transformers Sinks

Hard

Drive
Crypto Network

Video

in

MPEG

encode

Hard

Drive

Network
MPEG

decode

Audio

Out



Signaling API

Need some sort of mechanism for creating, controlling,
and tearing down flows, e.g.,

flow = flow_open();

flow_source(flow, "/usr/http/secretfile.html");

flow_xformer(flow, "/dev/crypto");

flow_xformer(flow, "/dev/http");

flow_sink(flow, "/dev/inet/192.168.1.3");

flow_start(flow);

flow_stop(flow);



Exception Handling

What happens if something goes wrong?

• OS may try to re-start device

• Redirect to a different device

• Error passed to application

• Switch to all-software flow

• Terminate



Resource Scheduler

What if two processes want access to /dev/crypto?

• Performance requirements

• Available resources

• Priorities

Flow-level scheduling costly, but infrequent

Detailed (e.g., bus access) scheduling more frequent



Programmable Peripherals

RadiSys ENP-2611

Network Card w/ IXP2400
Altera Stratix PCI

FPGAs: flow components or

wrappers around legacy peripherals (DMA absorbers)



Proof-of-Concept System

Interrupt

controller

VGA

controller

2MB
ZBT SRAM

off - chip

CPU0

SRAM 16kB

LRU

arbiter

M

S S S S

SRAM 8kB

NIC CPU

8kB
dual ported

SRAM

private
circuitry

bridge

M S

S

S

S

OPB

SRAM 8kB

8kB
dual ported

SRAM

private
circuitry

bridge

M S

S

S

S

OPB

SRAM 8kB

8kB
dual ported

SRAM

private
circuitry

bridge

M S

S

S

S

OPB

SRAM 8kB

8kB
dual ported

SRAM

private
circuitry

bridge

M S

S

S

S

OPB

M M M M

CRYPTO

CPU

SNIC CPUHDC CPU

JTAG

UART

S

USER

I / O

A

NIC device CRYPTO device HDC device SNIC device

General purpose peripherals

main system
memory

system CPU



Experimental Results

Time to send 1 Million packets through the pipeline

Packet Memory- Flow- Speed-up
size centric centric*

64 bytes 15.5s 13.6 13%

1024 bytes 114 59.2 49%

*Plus main processor mostly idle for these packets



Conclusions

New flow-centric architecture for operating systems

Have the OS manage inter-peripheral flows under
application control

Requires programmable peripherals: many already extant

Proof-of-concept showed nearly a 2× speedup

Minimal performance impact from additional computations
(e.g., security)


