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The Status Quo: Memory as Buffer
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I/O Becoming Faster than CPUs
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Our Idea: Flows Controlled by OS

Like a modern router’s control & data plane
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Abstract Server Model
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Signaling API

Need some sort of mechanism for creating, controlling,
and tearing down flows, e.g.,

flow = flow_open();

flow_source(flow, "/usr/http/secretfile.html");

flow_xformer(flow, "/dev/crypto");

flow_xformer(flow, "/dev/http");

flow_sink(flow, "/dev/inet/192.168.1.3");

flow_start(flow);

flow_stop(flow);



Exception Handling

What happens if something goes wrong?

• OS may try to re-start device

• Redirect to a different device

• Error passed to application

• Switch to all-software flow

• Terminate



Resource Scheduler

What if two processes want access to /dev/crypto?

• Performance requirements

• Available resources

• Priorities

Flow-level scheduling costly, but infrequent

Detailed (e.g., bus access) scheduling more frequent



Programmable Peripherals

RadiSys ENP-2611

Network Card w/ IXP2400
Altera Stratix PCI

FPGAs: flow components or

wrappers around legacy peripherals (DMA absorbers)



Proof-of-Concept System
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Experimental Results

Time to send 1 Million packets through the pipeline

Packet Memory- Flow- Speed-up
size centric centric*

64 bytes 15.5s 13.6 13%

1024 bytes 114 59.2 49%

*Plus main processor mostly idle for these packets



Conclusions

New flow-centric architecture for operating systems

Have the OS manage inter-peripheral flows under
application control

Requires programmable peripherals: many already extant

Proof-of-concept showed nearly a 2× speedup

Minimal performance impact from additional computations
(e.g., security)


