
SHIM: A Deterministic Model for
Heterogeneous Embedded Systems

Stephen A. Edwards and Olivier Tardieu

Department of Computer Science,
Columbia University

www.cs.columbia.edu/˜sedwards

{sedwards,tardieu}@cs.columbia.edu

Definition

shim \’shim\ n

1 : a thin often tapered piece of material (as wood, metal,
or stone) used to fill in space between things (as for
support, leveling, or adjustment of fit).

2 : Software/Hardware Integration Medium, a model for
describing hardware/software systems

NEW!Conclusions

SHIM is an effective model of computation for
embedded hardware/software systems

Formal semantics guarantee determinism & boundedness

Easy to synthesize into hardware and software

Applicable to large, important class of systems, but not all

Embedded systems should be designed on the SHIM
model of computation

Robby Roto (Bally/Midway, 1981)

Robby Roto Block Diagram

Z80

ROM

40K

SRAM

6K

NV SRAM

2K

blitter

Bus Bridge

(Mux)

Custom

Address

Custom

Data Video

Sound

I/O
Switches
Audio Left

Sound

I/O Audio Right

DRAM

16K

HW/SW Interaction
Software Blitter Memory Video

Interrupt

Interrupt

Blit

Blit

Blit

Pixels

Pixels

Pixels

Line

Line

Line

Line

Line

SHIM Wishlist

• Mixes synchronous and asynchronous styles

Need multi-rate for hardware/software systems

• Delay-insensitive (Deterministic)

Want simulated behavior to reflect reality

Verify functionality and performance separately

• Only requires bounded resources

Hardware resources fundamentally bounded

• Formal semantics

Do not want arguments about what something means

The SHIM Model

Sequential processes

Unbuffered point-to-point
communication channels
exchange data tokens

Fixed topology

Asynchronous

Synchronous communication events

Delay-insensitive: sequence of data through any channel
independent of scheduling policy (the Kahn principle)

“Kahn networks with rendezvous communication”

SHIM vs. Other Models

SHIM CSP Kahn SDF Haste Sync Petri

Deterministic
√ √ √ √

Blocking
√ √ √ √ √

Communication

Bounded Buffers
√ √ √ √ √

Multi-Rate
√ √ √ √ √ √

Data-Dependent
√ √ √ √ √

Rates

Easy-To-Schedule
√ √ √ √ √ √

Static Scheduling
√ √

Modeling in SHIM

To model introduce

Buffers Buffer processes

Interrupts Polling and periodic
communication

Synchrony Clock signals

Synchronous dataflow Buffers

Sensors Source processes

Arbiters A deterministic algorithm

Modeling Time in SHIM

SHIM is timing-independent

Philosophy: separate functional requirements from
performance requirements

Like synchronous digital logic: establish correct function
independent of timing, then check and correct
performance errors

Vision: clock processes impose execution rates, checked
through static timing analysis

The Syntax of Tiny-SHIM

Expressions

e ::= L (literal)

| V (variable)

| op e (unary op)

| e op e (binary op)

| (e) (paren)

Statements

s ::= V = e (assignment)

| if (e) s else s (conditional)

| while (e) s (loop)

| s ; s (sequencing)

| { s } (grouping)

| read(C, V) (blocking read)

| write(C, e) (blocking write)

Example Processes

Local variables: d, e

d = 0;

while (1) {

e = d;

while (e > 0) {

write(c, 1);

write(c, e);

e = e - 1;

}

write(c, 0);

d = d + 1;

}

Local variables: a, b, r, v

a = 0;

b = 0;

while (1) {

r = 1;

while (r) {

read(c, r);

if (r != 0) {

read(c, v);

a = a + v;

}

}

b = b + 1;

}

c

Robby Roto in SHIM: Block Diagram

Software Blit

buffer

Video out

buffer

pixels

sync

Pixel Clock

frame

end-of-frame

command

pixels

start-of-frame

while the player is alive do
Wait for start-of-frame
...game logic...
Write “false” to end-of-frame
Write to the blitter
...game logic...
Write “true” to end-of-frame

while 1 do
while not end-of-frame do

Read blit command
Write pixels to memory

Write frame

while 1 do
Write start-of-frame
for each line do

Emit line timing signals
for each pixel do

Wait for pixel clock
Read pixel from memory
Send pixel to display

Read next frame

The SOS Semantics of Tiny-SHIM

σ Process memory state p Process code a−→ Single-process rule

〈σ, p〉 Process p in state σ 〈σ〉 Terminated in state σ ⇒ System rule

E(σ, e) Value of e in σ

E(σ, e) = n

〈σ, v = e〉 → 〈σ[v ← n]〉
(assign)

E(σ, e) 6= 0

〈σ, if (e) p else q〉 → 〈σ, p〉
(if-true)

E(σ, e) = 0

〈σ,if (e) p else q〉 → 〈σ, q〉
(if-false)

E(σ, e) 6= 0

〈σ,while (e) p〉 → 〈σ, p ; while (e) p〉
(while-true)

E(σ, e) = 0

〈σ,while (e) p〉 → 〈σ〉
(while-false)

〈σ, p〉 a→ 〈σ′, p′〉
〈σ, p ; q〉 a→ 〈σ′, p′ ; q〉

(seq)

〈σ, p〉 a→ 〈σ′〉
〈σ, p ; q〉 a→ 〈σ′, q〉

(seq-term)

〈σ, read(c, v)〉 c get n−−−−−→ 〈σ[v ← n]〉 (read)

E(σ, e) = n

〈σ, write(c, e)〉 c put n−−−−−→ 〈σ〉
(write)

〈σ, p〉 → s

{〈σ, p〉}] S ⇒ {s}] S
(step)

〈σ, p〉 c put n−−−−−→ s 〈σ′, p′〉 c get n−−−−−→ s′

{〈σ, p〉 , 〈σ′, p′〉}] S ⇒ {s, s′}] S
(sync)

Syntax-Directed HW Translation

if (e) s1 else s2

e
s2 s1

while (e) s

e

s

write(c, e) read(c, v)

c = e v = c

Hardware Translation Example

a = 0

b = 0

1

r = 1

r

r = c

r

v = c

a += v

b += 1

d = 0

1

e = d

e

c = 1

c = e

e −= 1

c = 0

d −= 1

d = 0;
while (1) {

e = d;
while (e > 0) {
write(c, 1);
write(c, e);
e = e - 1;

}
write(c, 0);
d = d + 1;

}

a = 0;
b = 0;
while (1) {

r = 1;
while (r) {
read(c, r);
if (r != 0) {

read(c, v);
a = a + v;

}
}
b = b + 1;

}

Ongoing Work

• Translation into software

• Relaxation of block-on-single-channel rule

• Complete hardware/software design language

• Translation optimization for hardware and software

