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Definition

shim \’shim\ n

1 : a thin often tapered piece of material (as wood, metal,
or stone) used to fill in space between things (as for
support, leveling, or adjustment of fit).

2 : Software/Hardware Integration Medium, a model for
describing hardware/software systems



NEW!Conclusions

SHIM is an effective model of computation for
embedded hardware/software systems

Formal semantics guarantee determinism & boundedness

Easy to synthesize into hardware and software

Applicable to large, important class of systems, but not all

Embedded systems should be designed on the SHIM
model of computation



Robby Roto (Bally/Midway, 1981)



Robby Roto Block Diagram
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SHIM Wishlist

• Mixes synchronous and asynchronous styles

Need multi-rate for hardware/software systems

• Delay-insensitive (Deterministic)

Want simulated behavior to reflect reality

Verify functionality and performance separately

• Only requires bounded resources

Hardware resources fundamentally bounded

• Formal semantics

Do not want arguments about what something means



The SHIM Model

Sequential processes

Unbuffered point-to-point
communication channels
exchange data tokens

Fixed topology

Asynchronous

Synchronous communication events

Delay-insensitive: sequence of data through any channel
independent of scheduling policy (the Kahn principle)

“Kahn networks with rendezvous communication”



SHIM vs. Other Models

SHIM CSP Kahn SDF Haste Sync Petri

Deterministic
√ √ √ √

Blocking
√ √ √ √ √

Communication

Bounded Buffers
√ √ √ √ √

Multi-Rate
√ √ √ √ √ √

Data-Dependent
√ √ √ √ √

Rates

Easy-To-Schedule
√ √ √ √ √ √

Static Scheduling
√ √



Modeling in SHIM

To model introduce

Buffers Buffer processes

Interrupts Polling and periodic
communication

Synchrony Clock signals

Synchronous dataflow Buffers

Sensors Source processes

Arbiters A deterministic algorithm



Modeling Time in SHIM

SHIM is timing-independent

Philosophy: separate functional requirements from
performance requirements

Like synchronous digital logic: establish correct function
independent of timing, then check and correct
performance errors

Vision: clock processes impose execution rates, checked
through static timing analysis



The Syntax of Tiny-SHIM

Expressions

e ::= L (literal)

| V (variable)

| op e (unary op)

| e op e (binary op)

| ( e ) (paren)

Statements

s ::= V = e (assignment)

| if ( e ) s else s (conditional)

| while ( e ) s (loop)

| s ; s (sequencing)

| { s } (grouping)

| read( C, V ) (blocking read)

| write( C, e ) (blocking write)



Example Processes

Local variables: d, e

d = 0;

while (1) {

e = d;

while (e > 0) {

write(c, 1);

write(c, e);

e = e - 1;

}

write(c, 0);

d = d + 1;

}

Local variables: a, b, r, v

a = 0;

b = 0;

while (1) {

r = 1;

while (r) {

read(c, r);

if (r != 0) {

read(c, v);

a = a + v;

}

}

b = b + 1;

}

c



Robby Roto in SHIM: Block Diagram
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while the player is alive do
Wait for start-of-frame
...game logic...
Write “false” to end-of-frame
Write to the blitter
...game logic...
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while 1 do
while not end-of-frame do

Read blit command
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The SOS Semantics of Tiny-SHIM

σ Process memory state p Process code a−→ Single-process rule

〈σ, p〉 Process p in state σ 〈σ〉 Terminated in state σ ⇒ System rule

E(σ, e) Value of e in σ

E(σ, e) = n

〈σ, v = e〉 → 〈σ[v ← n]〉
(assign)

E(σ, e) 6= 0

〈σ, if (e) p else q〉 → 〈σ, p〉
(if-true)

E(σ, e) = 0

〈σ,if (e) p else q〉 → 〈σ, q〉
(if-false)

E(σ, e) 6= 0

〈σ,while (e) p〉 → 〈σ, p ; while (e) p〉
(while-true)

E(σ, e) = 0

〈σ,while (e) p〉 → 〈σ〉
(while-false)

〈σ, p〉 a→ 〈σ′, p′〉
〈σ, p ; q〉 a→ 〈σ′, p′ ; q〉

(seq)

〈σ, p〉 a→ 〈σ′〉
〈σ, p ; q〉 a→ 〈σ′, q〉

(seq-term)

〈σ, read(c, v)〉 c get n−−−−−→ 〈σ[v ← n]〉 (read)

E(σ, e) = n

〈σ, write(c, e)〉 c put n−−−−−→ 〈σ〉
(write)

〈σ, p〉 → s

{〈σ, p〉} ] S ⇒ {s} ] S
(step)

〈σ, p〉 c put n−−−−−→ s 〈σ′, p′〉 c get n−−−−−→ s′

{〈σ, p〉 , 〈σ′, p′〉} ] S ⇒ {s, s′} ] S
(sync)



Syntax-Directed HW Translation

if ( e ) s1 else s2

e
s2 s1

while ( e ) s

e

s

write( c, e ) read( c, v )

c = e v = c



Hardware Translation Example

a = 0

b = 0

1

r = 1

r

r = c

r

v = c

a += v

b += 1

d = 0

1

e = d

e

c = 1

c = e

e −= 1

c = 0

d −= 1

d = 0;
while (1) {

e = d;
while (e > 0) {
write(c, 1);
write(c, e);
e = e - 1;

}
write(c, 0);
d = d + 1;

}

a = 0;
b = 0;
while (1) {

r = 1;
while (r) {
read(c, r);
if (r != 0) {

read(c, v);
a = a + v;

}
}
b = b + 1;

}



Ongoing Work

• Translation into software

• Relaxation of block-on-single-channel rule

• Complete hardware/software design language

• Translation optimization for hardware and software


