
SHIM: A Deterministic Model for
Heterogeneous Embedded Systems

Stephen A. Edwards and Olivier Tardieu

Department of Computer Science,
Columbia University

www.cs.columbia.edu/˜sedwards

{sedwards,tardieu}@cs.columbia.edu

Definition

shim \’shim\ n

1 : a thin often tapered piece of material (as wood, metal,
or stone) used to fill in space between things (as for
support, leveling, or adjustment of fit).

2 : Software/Hardware Integration Medium, a model for
describing hardware/software systems

NEW!Conclusions

SHIM is an effective model of computation for
embedded hardware/software systems

Formal semantics guarantee determinism & boundedness

Easy to synthesize into hardware and software

Applicable to large, important class of systems, but not all

Embedded systems should be designed on the SHIM
model of computation

Robby Roto (Bally/Midway, 1981)

Robby Roto Block Diagram

Z80

ROM

40K

SRAM

6K

NV SRAM

2K

blitter

Bus Bridge

(Mux)

Custom

Address

Custom

Data Video

Sound

I/O
Switches
Audio Left

Sound

I/O Audio Right

DRAM

16K

HW/SW Interaction
Software Blitter Memory Video

Interrupt

Interrupt

Blit

Blit

Blit

Pixels

Pixels

Pixels

Line

Line

Line

Line

Line

SHIM Wishlist

• Mixes synchronous and asynchronous styles

Need multi-rate for hardware/software systems

• Delay-insensitive (Deterministic)

Want simulated behavior to reflect reality

Verify functionality and performance separately

• Only requires bounded resources

Hardware resources fundamentally bounded

• Formal semantics

Do not want arguments about what something means

The SHIM Model

Sequential processes

Unbuffered point-to-point
communication channels
exchange data tokens

Fixed topology

Asynchronous

Synchronous communication events

Delay-insensitive: sequence of data through any channel
independent of scheduling policy (the Kahn principle)

“Kahn networks with rendezvous communication”

SHIM vs. Other Models

SHIM CSP Kahn SDF Haste Sync Petri

Deterministic
√ √ √ √

Blocking
√ √ √ √ √

Communication

Bounded Buffers
√ √ √ √ √

Multi-Rate
√ √ √ √ √ √

Data-Dependent
√ √ √ √ √

Rates

Easy-To-Schedule
√ √ √ √ √ √

Static Scheduling
√ √

Modeling in SHIM

To model introduce

Buffers Buffer processes

Interrupts Polling and periodic
communication

Synchrony Clock signals

Synchronous dataflow Buffers

Sensors Source processes

Arbiters A deterministic algorithm

Modeling Time in SHIM

SHIM is timing-independent

Philosophy: separate functional requirements from
performance requirements

Like synchronous digital logic: establish correct function
independent of timing, then check and correct
performance errors

Vision: clock processes impose execution rates, checked
through static timing analysis

The Syntax of Tiny-SHIM

e ::= L (literal)

| V (variable)

| op e (unary op)

| e op e (binary op)

| (e) (paren)

s ::= V = e (assignment)

| if (e) s else s (conditional)

| while (e) s (loop)

| s ; s (sequencing)

| read(C, V) (blocking read)

| write(C, e) (blocking write)

| { s } (grouping)

Example Processes

Local variables: d, e

d = 0;

while (1) {

e = d;

while (e > 0) {

write(c, 1);

write(c, e);

e = e - 1;

}

write(c, 0);

d = d + 1;

}

Local variables: a, b, r, v

a = 0;

b = 0;

while (1) {

r = 1;

while (r) {

read(c, r);

if (r != 0) {

read(c, v);

a = a + v;

}

}

b = b + 1;

}

c

Behavior of the Processes
sender receiver

C=0
sink

D=1C=1
C=1
C=0

D=2
C=1
C=2
C=1
C=1
C=0

D=3
C=1
C=3
C=1
C=2
C=1
C=1
C=0

D=4

d = 0;
while (1) {

e = d;
while (e > 0) {

write(c, 1);
write(c, e);
e = e - 1;

}
write(c, 0);
d = d + 1;

}

a = 0;
b = 0;
while (1) {

r = 1;
while (r) {

read(c, r);
if (r != 0) {

read(c, v);
a = a + v;

}
}
b = b + 1;

}

Robby Roto in SHIM: Block Diagram

Software Blit

buffer

Video out

buffer

pixels

sync

Pixel Clock

frame

end-of-frame

command

pixels

start-of-frame

while the player is alive do
Wait for start-of-frame
...game logic...
Write “false” to end-of-frame
Write to the blitter
...game logic...
Write “true” to end-of-frame

while 1 do
while not end-of-frame do

Read blit command
Write pixels to memory

Write frame

while 1 do
Write start-of-frame
for each line do

Emit line timing signals
for each pixel do

Wait for pixel clock
Read pixel from memory
Send pixel to display

Read next frame

Translating Tiny-SHIM to Software

Each process becomes a C function with static variable
that can resume itself

Main scheduler takes runnable process from head of list
and calls its function.

Processes mark themselves blocked, can scheduler their
communication partner.

C Translation Example

process p1 {

output C;

write(C, 42);

}

process p2 {

input C;

int v;

read(C, v);

}

C Declarations

typedef struct process_struct { Linked list of runnable processes
void (*process)(void); Function of process
struct process_struct *next; Next runnable process

} process_t;

typedef struct { Channel datatype
int value; Value being transferred
process_t *waiting; Blocked process, if any

} channel_t;

channel_t C = { 0, 0 }; Definition of channel C

int p1_state = 0; State of each process
int p2_state = 0;
void p1_function(void); Process functions
void p2_function(void); (forward declarations)

process_t p1 = { p1_function, 0 }; Linked List
process_t p2 = { p2_function, &p1 }; of runnable
process_t *head_process = &p2; processes

The (Trivial) Scheduler

int main() The scheduler

{

process_t *running_process;

while (head_process) {

running_process = head_process; Remove head

head_process = running_process->next;

(*(running_process->process))(); Run it

}

return 0; Everything terminated or deadlocked

}

The Writing Process

process p1 {
output C;
write(C, 42);

}

void p1_function() {
switch (p1_state) { Resume at current state
case 1: goto L1;
case 0: goto L0;
}

L0:
C.value = 42; write(C, 42)
if (C.waiting) {

(C.waiting)->next = head_process; Schedule
head_process = C.waiting; reading process

}
C.waiting = &p1;
p1_state = 1;
return; Suspend

L1:
;

}

The Reading Process

process p2 {
input C;
int v;
read(C, v);

}

void p2_function() {
static int v;
switch (p2_state) { resume at current state
case 0: goto L0;
case 1: goto L1;
}

L0:
if (!C.waiting) { read(C, v)

C.waiting = &p2;
p2_state = 1;
return; Suspend

}
L1:
v = C.value;
(C.waiting)->next = head_process; Schedule
head_process = C.waiting; writing process
C.waiting = 0;

}

Write before Read

/* write(C, 42) */

C.value = 42;

if (C.waiting) {

(C.waiting)->next =

head_process;

head_process =

C.waiting;

}

C.waiting = &p1;

p1_state = 1;

return;

L1:

/* read(C, v) */

if (!C.waiting) {

C.waiting = &p2;

p2_state = 1;

return;

}

L1:

v = C.value;

(C.waiting)->next =

head_process;

head_process =

C.waiting;

C.waiting = 0;

Read before Write

/* write(C, 42) */

C.value = 42;

if (C.waiting) {

(C.waiting)->next =

head_process;

head_process =

C.waiting;

}

C.waiting = &p1;

p1_state = 1;

return;

L1:

/* read(C, v) */

if (!C.waiting) {

C.waiting = &p2;

p2_state = 1;

return;

}

L1:

v = C.value;

(C.waiting)->next =

head_process;

head_process =

C.waiting;

C.waiting = 0;

Translating Tiny-SHIM to Hardware

CFG
Node

Control
Fragment

Datapath
Fragment

Assignment v = e e

Decision
e

e

Merge

Cycle
Boundary

. . .

Translation Patterns

if (e) s1 else s2

e
s2 s1

while (e) s

e

s

write(c, e) read(c, v)

c = e v = c

Hardware Translation Example

a = 0

b = 0

1

r = 1

r

r = c

r

v = c

a += v

b += 1

d = 0

1

e = d

e

c = 1

c = e

e −= 1

c = 0

d −= 1

d = 0;
while (1) {

e = d;
while (e > 0) {

write(c, 1);
write(c, e);
e = e - 1;

}
write(c, 0);
d = d + 1;

}

a = 0;
b = 0;
while (1) {

r = 1;
while (r) {

read(c, r);
if (r != 0) {

read(c, v);
a = a + v;

}
}
b = b + 1;

}

The SOS Semantics of Tiny-SHIM

σ Process memory state p Process code

〈σ, p〉 Process p in state σ 〈σ〉 Terminated in state σ
a−→ Single-process rule ⇒ System rule

E(σ, e) Value of e in σ

E(σ, e) = n

〈σ, v = e〉 → 〈σ[v ← n]〉 (assign)

E(σ, e) 6= 0

〈σ,if (e) p else q〉 → 〈σ, p〉
(if-true)

E(σ, e) = 0

〈σ, if (e) p else q〉 → 〈σ, q〉 (if-false)

Semantics of Looping & Sequencing

E(σ, e) 6= 0

〈σ,while (e) p〉 → 〈σ, p ; while (e) p〉
(while-true)

E(σ, e) = 0

〈σ, while (e) p〉 → 〈σ〉
(while-false)

〈σ, p〉 a→ 〈σ′, p′〉
〈σ, p ; q〉 a→ 〈σ′, p′ ; q〉

(seq)

〈σ, p〉 a→ 〈σ′〉
〈σ, p ; q〉 a→ 〈σ′, q〉

(seq-term)

Communication and Concurrency

〈σ,read(c, v)〉 c get n−−−−−→ 〈σ[v ← n]〉 (read)

E(σ, e) = n

〈σ,write(c, e)〉 c put n−−−−−→ 〈σ〉
(write)

〈σ, p〉 → s

{〈σ, p〉}] S ⇒ {s}] S
(step)

〈σ, p〉 c put n−−−−−→ s 〈σ′, p′〉 c get n−−−−−→ s′

{〈σ, p〉 , 〈σ′, p′〉}] S ⇒ {s, s′}] S
(sync)

Summary

• SHIM: A delay-insensitive (deterministic) model of
computation that supports synchrony and asynchrony

• Tiny-SHIM: A little language that embodies the model

• A procedure for translating Tiny-SHIM into software

• A procedure for translating Tiny-SHIM into hardware

• Formal operational semantics of Tiny-SHIM

Ongoing Work

• Relaxation of block-on-single-channel rule

• Complete hardware/software design language

• Static analysis of deadlock

• Translation optimization for hardware and software

