
Wireframe Project Proposal
∗

Stephen A. Edwards (se2007)

Spring 2024

The core of this project is a hardware accelerator for animating numerous straight line

segments on a vga display (Figure 1). The project as a whole is meant to be a greatly sim-

pli�ed model of modern 3d graphics accelerators for displaying wireframe models instead

of �lled, textured triangles. It will read and display objects represented in some 3d �le

format (such as Wavefront obj) and allow the user to adjust the viewpoint.

The hardware accelerator will be responsible for taking a list of line segments ex-

pressed in 2d coordinates and displaying them on the screen; software will be responsible

for supplying this line segment information, which it will generate from rotated, scaled,

and projected 3d data loaded from a 3d �le format. Each line segment will be drawn one

pixel wide with white pixels against a black background; the hardware will not attempt to

handle any 3d considerations such as hidden line removal.

“Penguin” (https:// skfb.ly/ovEOr) by Berk Gedik

is licensed under Creative Commons Attribution (http:// creativecommons.org/ licenses/by/4.0/ )

Figure 1: A wireframe image. This is drawn as many straight line segments, but this 3d

model started as a list of 3.4k triangles that references a list of 1.7k 3d vertices.

∗

This is meant as an exemplary project proposal for the author’s CSEE 4840 Embedded System Design

1

https://skfb.ly/ovEOr
http://creativecommons.org/licenses/by/4.0/


Framerate will be 60 frames per second. The display will be �icker-free by synchroniz-

ing the delivery of new lists of line segments from the software with the screen refresh.

Resolution will be a vga standard with a minimum of 640×480. The ultimate choice of

resolution will be based on the amount of memory available on the fpga.

Frame Bu�er will be one bit-per-pixel and likely be double-bu�ered so that one frame

will be displayed and erased (I will try to take advantage of write-after-read behavior)

while the other is being rendered, but this will ultimately depend on memory constraints.

Frame bu�er memory will be on the fpga, not in an external dram.

Line Drawing will be done using Bresenham’s line algorithm with no attempt at an-

tialiasing. Coordinates supplied will be in units of integer pixels from the upper left corner,

likely 10 bits per dimension.

Hardware-Software Interface will accommodate two main functions: transferring the

display list (of line segments) from software to hardware once per frame and synchroniza-

tion of the software so that it supplies data at exactly 60 frames per second.

Because I assume the software will recalculate the display list for each frame, there

seem to be two main choices for the communication style. A critical design decision is

which of these approaches to adopt.

In a command-based style, the software sends a sequence of drawing commands to the

hardware a word at a time through a single command port (the commands themselves may

be a variable number of words). Internally, the hardware may bu�er these commands. This

style encourages the use of a dma controller to perform the actual transfers, freeing the

software to focus purely on preparing the display list to transfer. Sony’s Playstation takes

this approach and includes a dma controller that can stream command sequences from

in-memory linked lists
1
. This approach may reduce the amount of command bu�ering

needed on the accelerator but may preclude elaborate commands (e.g., looping) and certain

parallelism.

In a memory-based style, the software stores the display list in a shared memory, which

the hardware then scans to perform rendering operations. Such an approach is more �ex-

ible (e.g., it allows more complicated data structures to be transferred such as an array

of triangles that references an array of vertices) but requires more bu�er memory and

a more elaborate system in the hardware for reading commands. Modern gpus, such as

those supplied by Intel in recent Core series processors, take this approach.

File Format Ultimately, the software will be able to read one of the many 3d object �le

formats. Wavefront obj is fairly simple and textual, but will still require some processing

to convert to a simple set of line segments. The stl format, commonly used for 3d printing,

is another alternative.

1

Joshua Walker, Everything You Have Always Wanted to Know about the Playstation But Were Afraid to

Ask, https://archive.org/details/psx-everything-you-have-always-wanted-to-know-about-the-playstation

2

https://archive.org/details/psx-everything-you-have-always-wanted-to-know-about-the-playstation


3d to 2d Projection The software will use the standard algorithm that starts with a

position of a camera to project vertices onto the plane.

User Interface The user will be able to move a virtual camera around and through a

3d model. Options include using a mouse to implement standard controls (e.g., dragging a

virtual point around a sphere, translating the camera horizontally and vertically, and mov-

ing closer to or farther from the center of the image), using an analog usb game controller

with one or more joysticks, or using a multiple-knob little keyboard with a usb interface.

One of these interfaces will be chosen as part of the design phase.

Major Tasks

• Design decisions for all major points (e.g., resolution, memory size, hardware/software

interface style and details, any use of dma, and supported 3d �le format). These will

be in the design document

• Desktop software prototype running under sdl able to read and display 3d object

data as a wireframe

• Verilator-based testbench able to run the hardware accelerator to verify line draw-

ing, double-bu�ering (if applicable), and delivery of the display list. The testbench

will write out each generated video frame as a pbm �le.

• Hardware accelerator source code, consisting of vga timing generator, frame bu�er

display, line drawing, and software synchronization mechanism

• Linux device driver for the hardware accelerator including a “high-level” interface

meant to be called from C

• User interface for 3d software that uses libusb to read from the chosen user interface.

3


