
CSEE 4840 Project Proposal: FPGA Music Mixer
Joshua Zhou (jz3311), Joy He (jh4337), Harrison Riley (hjr2128),Oli Macgregor (owm2106)

Overview
We would like to design an FPGA DJ that takes two song recording files and performs a

hardware-accelerated FFT algorithm on the waveforms. The user can then use switches on the

FPGA to decide which effects they would like on each song (half the switches will be for one

song, half for the other). They can also decide whether to play one song or a weighted addition of

both songs.

Software Component
We will store preselected song files on an SD card, which can be selected by the user. We will

use C or C++ to load these files (either as WAV or MP3 depending on our assessment of

available resources), perform any necessary pre-processing, and send the files in chunks (to not

overload the hardware) to hardware. We will then receive the frequency analysis from the

hardware and perform the “dj effects” in software. Our hope is to have three effects:

high-pass/low-pass filtering, echo-ing, and reverb, but we will assess the time constraints as the



project progresses. We will take inspiration from previous audio and image-processing projects

in this class on how to best design the interface between hardware and software and deal with

large files.

Hardware Component

Although the fast fourier transform is already an optimization of the original fourier transform in

software, we would like to see if this can be accelerated more by being performed in hardware.

There are several papers that discuss the procedure to do so, including a STFT (short-time fourier

transform) that performs FFT operations in parallel with each other. We plan to use the code

blocks in these papers to save time. Additionally, the user interface will begin at the hardware.

We plan to use half the switches to toggle the effects for the first song the user selects and half to

toggle the effects of the other song. We also plan to use the LED lights on the FPGA, and

potentially the VGA monitor, to indicate volume.

Parts

● VGA monitor (to display which songs are being played)

● FPGA Altera Cyclone V

● SD Card with Ubuntu

● Speaker

● Microphone (optional stretch)

Milestones

1) Flesh out hardware-software interfacing



2) Get audio files on SD Card, read them on software, and send files to hardware (make sure

the speaker can play the songs individually and combined)

3) Implement hardware-accelerated FFT in SystemVerilog, send frequency analysis back to

software

4) Perform audio effects on software → figure out whether to perform inverse FFT in

software or hardware

5) Implement switch logic on FPGA

Potential Issues

● Audio files are memory intensive. We will have to split computation into chunks

● FFT acceleration in hardware is not very common (may try to use a “knockoff” version of

the fourier transform that is similar enough)

● Potential inefficiencies in interfacing between hardware and software

References

- https://web.mit.edu/6.111/www/f2015/projects/asloboda_Project_Final_Report.pdf
- https://www.twam.info/general/building-a-custom-usb-audio-mixer
- https://web.mit.edu/6.111/www/f2017/handouts/FFTtutorial121102.pdf
- https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=040c8b6516ae83a284e0e8f54

82f3c1c6314ed86
- https://www.ijrte.org/wp-content/uploads/papers/v8i1/A9240058119.pdf

https://web.mit.edu/6.111/www/f2015/projects/asloboda_Project_Final_Report.pdf
https://www.twam.info/general/building-a-custom-usb-audio-mixer
https://web.mit.edu/6.111/www/f2017/handouts/FFTtutorial121102.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=040c8b6516ae83a284e0e8f5482f3c1c6314ed86
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=040c8b6516ae83a284e0e8f5482f3c1c6314ed86
https://www.ijrte.org/wp-content/uploads/papers/v8i1/A9240058119.pdf

