Processors, FPGAs, and ASICs

Part 2: Processors to Fixed-Function

Stephen A. Edwards

Columbia University
Spring 2024

Flexible, efficient

You choose

Polygons (Intel)
ASIC Circuit (Sony)

Gate Array Wires

FPGA Logic network
PLD Logic function
GP Processor Program (e.g., ARM)
SP Processor Program (e.g., DSP)
Multifunction Settings (e.g., Accelerometer)
Fixed-function Part number (e.g., 7400)

Cheap, quick to design

Euclid

Euclid's Algorithm

```
int gcd(int m, int n)
{
    int r;
    while ((r = m % n) != 0) {
        m = n;
        n = r;
        }
    return n;
}
```

The
Intel
80386 c. 1985

i386 Programmer's Model

31	0
eax	
ebx	
ecx	
edx	

Mostly General-
Purpose
Registers

esi
edi
ebp
esp

Source index Destination index
Base pointer
Stack pointer

eflags
eip

Status word Instruction Pointer

Euclid on the i386

```
int gcd(int m, int n)
{
    int r;
    while ((r = m % n) != 0) {
        m = n;
        n = r;
    }
    return n;
}
```


Sun's SPARC Processor c. 1987

SPARC Programmer's Model

31	
r0	Always 0 Global Registers
r1	
:	
r7	Output Registers
r8/o0	
:	
r14/o6	Stack Pointer
r15/o7	

r16/l0	Local Registers
r17/11	
:	
r23/17	Input Registers
r24/i0	
:	
r30/i6	Frame Pointer Return Address
r31/i7	

PSR	Status Register
PC	Program Counter
nPC	Next PC

SPARC Register Windows

The output registers of the calling procedure become the inputs to the called procedure The global registers remain unchanged

The local registers are not visible across procedures

		$\begin{gathered} \hline \text { r8/o0 } \\ \vdots \\ \text { r15/o7 } \end{gathered}$
		r16/l0
		r23/17
	r8/00	r24/i0
	:	:
	r15/o7	r31/i7
	r16/10	
	:	
	r23/17	
r8/o0	r24/i0	
:	:	
r15/07	r31/i7	
r16/l0		
:		
r23/17		
r24/i0		
r31/i7		

Euclid on the SPARC

```
int gcd(m, n)
int m, n;
{
    int r;
    while ((r = m % n) != 0) {
        m = n;
        n = r;
    }
    return n;
}
```


DSP 56000 Programmer's Model

554847	2423		0 Source Registers	15	Program Counter	
		x0				
	y1	y0			Status Register	
a2	a1	b0	Accumulator Accumulator		Loop Count	
b2	b1					
15	015	015	0	15	PC Stack	
r7	n7	m7		0		
	:					
:						
r4	n4	m4		Address Registers	15	SR Stack
r3	n3	m3	:			
r	:	:	0			
r0	n0	m0				
					Stack pointer	

Motorola DSP56000 AGU

FIR Filter in 56000

```
move #samples, r0
move #coeffs, r4
move #n-1, m0
move m0, m4
movep y:input, x:(r0)
clr a x:(r0)+, x0 y:(r4)+, y0
rep #n-1
mac x0,y0,a x:(r0)+, x0 y:(r4)+, y0
macr x0,y0,a (r0)-
movep a, y:output
```

TMS320 C6201 VLIW DSP c. 1997

FIR in One 'C6 Assembly Instruction

FIRLOOP:

FIR in One 'C6 Assembly Instruction

FIRLOOP:

	LDH	.D1	*A1++, A2	Fetch next sample
	LDH	. D2	*B1++, B2	Fetch next coefficient
[B0]	SUB	.L2	B0, 1, B0	; Decrement loop count
[B0]	B	. S2	FIRLOOP	; Branch if non-zero
	MPY	. M1X	A2, B2, A3	; Sample \times Coefficient
	ADD	.L1	A4, A3, A4	; Accumulate result

FIR in One 'C6 Assembly Instruction
Load a halfword (16 bits)

FIR in One 'C6 Assembly Instruction

FIR in One 'C6 Assembly Instruction

FIRLOOP:

FIR in One 'C6 Assembly Instruction

FIRLOOP:

	LDH	.D1	*A1++, A2	; Fetch next sample
	LDH	. D2	*B1++, B2	; Fetch next coefficient
[B0]	SUB	.L2	В0, 1, В0	; Decrement loop count
[B0]	B	. S 2	FIRLOOP	; Branch if non-zero
	MPY	.M1X	A2, B2, A3	; Sample \times Coefficien
	ADD		A4, $\mathrm{A} 3, \mathrm{~A} 4$; Accumulate result

Analog Devices ADXL345 Accelerometer

14 pins, 3 mm by 5 mm

DE1-SoC Connections to the ADXL345 Accelerometer

$I^{2} \mathrm{C}$ Bus Protocol

ADXL345

 Registers (30, 8-bit)| Address | | Name | Type | Reset Value | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Hex | Dec | | | | |
| 0x00 | 0 | DEVID | R | 11100101 | Device ID |
| 0×01 to $0 \times 1 \mathrm{C}$ | 1 to 28 | Reserved | | | Reserved; do not access |
| $0 \times 1 \mathrm{D}$ | 29 | THRESH_TAP | R/W | 00000000 | Tap threshold |
| $0 \times 1 \mathrm{E}$ | 30 | OFSX | R/W | 00000000 | X-axis offset |
| $0 \times 1 \mathrm{~F}$ | 31 | OFSY | R/W | 00000000 | Y-axis offset |
| 0×20 | 32 | OFSZ | R/W | 00000000 | Z-axis offset |
| 0×21 | 33 | DUR | R/W | 00000000 | Tap duration |
| 0×22 | 34 | Latent | R/W | 00000000 | Tap latency |
| 0×23 | 35 | Window | R/W | 00000000 | Tap window |
| 0×24 | 36 | THRESH_ACT | R/W | 00000000 | Activity threshold |
| 0x25 | 37 | THRESH_INACT | R/W | 00000000 | Inactivity threshold |
| 0×26 | 38 | TIME_INACT | R/W | 00000000 | Inactivity time |
| 0×27 | 39 | ACT_INACT_CTL | R/W | 00000000 | Axis enable control for activity and inactivity detection |
| 0×28 | 40 | THRESH_FF | R/W | 00000000 | Free-fall threshold |
| 0×29 | 41 | TIME_FF | R/ \bar{W} | 00000000 | Free-fall time |
| $0 \times 2 \mathrm{~A}$ | 42 | TAP_AXES | R/W | 00000000 | Axis control for single tap/double tap |
| $0 \times 2 \mathrm{~B}$ | 43 | ACT_TAP_STATUS | R | 00000000 | Source of single tap/double tap |
| $0 \times 2 \mathrm{C}$ | 44 | BW_RATE | R/W | 00001010 | Data rate and power mode control |
| $0 \times 2 \mathrm{D}$ | 45 | POWER_CTL | R/W | 00000000 | Power-saving features control |
| $0 \times 2 \mathrm{E}$ | 46 | INT_ENABLE | R/W | 00000000 | Interrupt enable control |
| $0 \times 2 \mathrm{~F}$ | 47 | INT_MAP | R/W | 00000000 | Interrupt mapping control |
| 0x30 | 48 | INT_SOURCE | R | 00000010 | Source of interrupts |
| 0×31 | 49 | DATA_FORMAT | $\mathrm{R} / \overline{\mathrm{W}}$ | 00000000 | Data format control |
| 0×32 | 50 | DATAXO | R | 00000000 | X-Axis Data 0 |
| 0×33 | 51 | DATAX1 | R | 00000000 | X-Axis Data 1 |
| 0x34 | 52 | DATAYO | R | 00000000 | Y-Axis Data 0 |
| 0×35 | 53 | DATAY1 | R | 00000000 | Y-Axis Data 1 |
| 0×36 | 54 | DATAZO | R | 00000000 | Z-Axis Data 0 |
| 0×37 | 55 | DATAZ1 | R | 00000000 | Z-Axis Data 1 |
| 0×38 | 56 | FIFO_CTL | R/W | 00000000 | FIFO control |
| 0x39 | 57 | FIFO_STATUS | R | 00000000 | FIFO status |

Register Documentation (only 3 pages)

register definitions

Register Ox00-DEVID(Read Only)

D7	$\mathrm{D6}$	DS	D 4	$\mathrm{D3}$	D 2
1	D 1	$\mathrm{D0}$			
1	1	1	0	0	1

value for tap interrupls The data format is unsigned, therefore. vile for tap iterruplk The data tormaris unsigned, therefore
the magnitude of the tap event is compared with the value
in THRESH TAP (or onomal in THRESH TAP for nomman ltp detection The scale factor is

undestrable
enabled.

Register oxIE, Register OxTIE, Register ox20-OFSX,
OFSY, OFSZ (Read/Write)
OFSY, OFSZ (Read/Write) with a scale factor of $15.6 \mathrm{mg} / \mathrm{SB}$ (that is. $0 \mathrm{axF}=2 \mathrm{~g}$). The value stored in the offset regisers is untommitially added to the
acceleration data, and the resulting vulue is stored in the output
 calibration and the use of the offsest registers, refer to the Offset Calibration section
Register Ox21-DUR (Read/Write)
The DUR register is eight bits and contains an unsigned time
 scale factor is 625 psi
double tap functions
Register Ox22-Latent (Read/Write)
The latent register is eight bits and contains an unsigned time valuer representing the wait time foom the detection of a tap
event to the start of the time window (defined by the windone erent to the start of the time windere (defined by the window
register) during whish a pasibile second tope event can bedetected
 function.
Register 0x23-Window (Read/Write)
The window register is eight bits and contains an unsigned time
value represerening the anount of fine affer the experation of the value represerving the anount of tine after the expiration of bhe
latency time (determined hy the latent register) during which a latency yime (determined by the latent repister) during which a value of 0 disables the doublk tap function.
Register ox24-THRESH_ACT (Read/Write)
 valuc for detecting activity. The data format s sunsgned, $x \infty$ the
maggitude of the activity event is comppred with the value in
 A value of o may result in undesirable behavior if the activit

Register 0x25-THRESH_INACT (Read/Write) The THRESHH INACT r resister is eqgh b bis and bolds the threchold he magnitude of the inactivity event is comppured with the valu
 A value of 0 may resul
interupti s enabled.

Register 0x26-TIME_INACT(Read/Write)

time value reprecesmting the anmount of of time that aceclestion nuse be lexs than the value in he THRESH__INACT regiser for inactivity to be declared. The scale factor is 1 sec/l:SB. Unlike
 dta. A t lest one oatput smple must be generated for the maxctivity interrupt to be triggered. This results in the function
appearing unresponsive if he TMME _NACT reqister is set to Appearing untesponsive if the TMME. INACT registe is set toa
value less than the time constant of the output data rate A valuc of 0 resulst in an interrupt when the cotput data is less than the
value in the THRESH_INACT registr.

 ACT ACIDC and INACT ACIDC Bits
A setting of 0 selectst decoupled operation, and a seting of 1
enathes ac coupled operation. In decoupled peperation, the urrent acceleration magnitude is compared directly with THRESH__CT and THRESH INACT to determine whether tivity or inactivity is detected
In acc-coupled operation fors stivity delection, the acceleration value. New sempleses of facceleration are then comparpered to this
 similaty in ac-coupled operation for ingactevity detection a. reference value is used for comparison and is updated whene the device exceeds the inactivity thrsbold Ater the reference
value is selceted, the device compares the magnitude of the value is selected, the device compares the magnitudd of the with THRESH_INACT. If the difference is less than the value in
THRESH INACT for the time in TMME INACT, the device is THRESH INACT for the time in TIME, INACT, the device

ACT x Enable Bits and INACT_x Enable Bits
A setting of 1 enables $x-y$. y, or z.axis participation in detecting particpation If If all axes are excluded, the function is disabled. For activity detection, all partioipating axes sare logically ORed.
causing the activity function to triger wher any oftle partion Pausing the activity function to tigiger when any of the pertiti-
pating xase exceds the trusshond. Fror minactivity detection, all participating axes are logically ANDed, cusing the inactivity
function to trigger only ff all participating axe are below the fumction to trigger only if all part
threstold for the pecified time.
Register 0x28-THRESH_FF (Read/Write)
The THRESH_FFrregister is s eight biad and and holds she chrestold valux, in unsigned format, for frece fall detective. The e cerlerertion on
 hat a value of 0 mg may resalt in undesiriblle bechaviox if the free
 Register 0929 are reconimended.
The TME FF register is eight bits and stores an unsigned time alue represerning the minimum time that the value of all axes
nuat be less than THRESH_FF to generate a free fall intert must be cess than THRESH . FF to generate a free fill interruph
 Register O $02 A-T A P$ AXES (Read/Write)

Suppress Bit

Setting the suppress bit suppresses double tap detection if
 TAP x Enable Bits
Aseting of 1 in the TAP. X enable, TAP. Y enable, or TAP Z A setting of 0 excluds the selocted axis from puaticipation in A setting of 0
tap detection.
$\frac{\text { Register ox } 28-A C T \text { TAP_STATUS (Read Only) }}{07 \text { OT }}$

$A^{\prime} C_{X}$ S Source and TAP X Source Bits
These bits indicate the first axsi involved in a tap or activity vent. A setting of 1 correpponds to innolvecment in the even. Sta is availhble, these bits sre not deared but are overwiriten by the new data. The ACT_TAP.STATUS register thould be read defore clering the interrupt. Disashling an axis from perticipation dears the correspanding surce bit
single tup/double tap event occurs.

Asleep Bit
A seting of 1 in the askep bit indictes that the part is aseep.
and a setting of 0 indicates that the part is not askep. This bit coggles only if the device is configured for auto slece. See the AUTO. SLLEEP Bit section for mose information on autoslec
 LOW_POWER Bit
setting of 0 in the LOW_PONER bit selcets sormal bperation, and a seting of 1 stcots seduced power operation, which has kate Bits
These bits select the device bandwidht and output duta rate (see Than 7 and T Thele 8 for details). The default value is 0 xOOA, which es selected that is isproppriate for the compunication protecol

Register Ox2D-POWER_CTL (Read/Write)

 Link Bit
Setting of 1 in the link bit with both the a ativity ynd inactivity unctions enabled delays the start of the activity fuxtion until
 he ectivity and inactivity functions. When this bet is set to oo, the inactivity and cactivity functionss rece concurrent. Ad.
information can be found in the Link Modes section.
When dearing the link biti, it is recommended that the part be When dearing the link biti, it is recammended that the part be bed
 device is propenty biased if deep mode is manuully dishled, may have additional noise, especillly if the device was adseep hen the bit was cleare
UTO_SLLEEP Bit
The link betissst, aseting of in the AUTO_SLIEFP bit enables
 mabled and inathtiviy is depected (that is is when acecelertion is
 TMME INACC). If activity is also enabled. ,the ADXL.345 sutumatrally wakes up from slecp after detecting activity and Egiser A setting of oin the AUTO SL.EPP bit disablss sutumnatic swidching to slepp mode Sse the description of the
this section for more information on slep p made.

Whe link bitis not set, he AUTO_ SLEEP feature is disabled diseting he Auro shepp but does sot have an inpast ton
 When clearing the AUTO SEEFP batit it s rcecrmmended that the Wert be phaced into standhy mode nad dhen se back to measure nent mode with a subsequent write. This is done to ensure thay
hed device is property based ifstep mode is manually disable he deviece is property biased ip steep mode eis manuall disablect this clearded may have additional noise, especially if the device Mas assurep whe Bit
 DXIL245 powers up in tandly mode with minimum power sleep Bit
setting of 0 in the serep setting ofo in the slepp bit puts the part into the normal mod

 wakeyp bas. In skep mode. only the ectivity fusction can be usec
When the DATA READY interrupt is supressed, the outpout When the DATA,REAADY interrupt is suppressed. the oupput the smmpling rate set ty the walkeup bits (DiDO).
When clearing the seep bit, it is secommendedd that the part b
placed into standty mode and then set back to mesaurement mode with a subsequent write. This is done to ensurue that the evice is propery biased ifs slep mode is manually disabled; therwise, the first few samples of data a feer hiesleep bit is tared may have additional noise, specially if the device wzs
Wakeup Bits
These bits controt he frequency of readings s in slepp mode x scribed in Trable 20 .
Table 20. Frequency of Readings in Slecp Mode

Setting hits in this registerto a vulue of 1 enables their reppetive functions to generate interrupts, whereasa value of f prevents
the fuustions from generating interupts. The DATA READY watermark, and overrun bits enable only the intercups output, the functions are yhwys) enadled. H i is recomme
be configured before enabling their outputs.

D7	D6	DS	D4
Datarkeady	SINGLE TAP	DOUBLE.TAP	Activity
${ }^{\text {D }}$	${ }^{0} 2$	${ }^{\text {D }}$	Do
mactivity	free fall	Watermark	Overun

Bits set to 1 in this reqister indicate than their respentive functions correspending event has not occurred. The DATA__READY, w\#trmark, and overrun bits are a lways set if the corresponding events occur, reggraless of the 1 NT ENABLE repister setings;
and are clared by reading data from the DATAX, DATAY, and DATAZ registers. The DATA_READY and watermark bits may require maltipe reank, as midicexd in the FIFO mode descriptions
in the FIFO section Other bits and the corresponding interupts. in the FIFO section Other biks. and the corresponding
zre clared by reading the INT SOURCE register Register Ox31-DATA FORMAT (Read/Write)
 The DATA_FORMAT register contrals the presenntaion of data the +16 g range, must be clipped to vovid rolkere. sele_test bit
A setting of 1 in the SELE_TEST bit zpplies a self test force to
 SPI Bit

A value of 1 in the SP1 bits sets the device to 3 -wire SP1 mode.
and a value of 0 sets the device to 4 wire SP mode.

Analog Devices ADV7180 Video Decoder

Fixed-function: The 7400 series

7400
Quad NAND Gate

Octal D Flip-Flop

The

74181
4-bit
ALU

The

74181
4-bit ALU

