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1 Introduction

In this project, we are aiming to implement a sound localization system. The microphone array will lie stationary
in a row in the center of the room and the audio source will be a wireless speaker that we manually move
around. The design will take place in three steps. First, the FPGA will acquire data from the microphones and
store it in its memory. Second, the FPGA will calculate the angular offset of the audio source with respect to the
microphone array. Finally, we will gather the display data.

2 System Block Diagram

Figure 1: System Block Diagram

Figure 1 shows the system block diagram of our design. It shows the general flow of data among blocks on
the FPGA and in software.

3 Algorithms

Many algorithms exist for localizing a sound source using a microphone array. At their core, all of the known
methods involve combining the spatial information from the microphone arrangement with the temporal infor-
mation from the signal’s arrival at the microphone array. More advanced methods achieve higher resolution (at
the cost of higher computational effort) by calculating more obscure wave properties than amplitude and phase
and optimizing on functions of those properties. More advanced methods still may use machine learning to
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implement an adaptive filtering technique. Due to memory and computational constraints, we will rely on the
delay-and-sum technique to perform direction-of-arrival (DOA) analysis.

3.1 Bartlett Beamforming Algorithm for determining direction of arrival

Given a matrix representing the audio signals from a microphone array, beamforming is a method of weighting
each sensor’s signal vector such that audio signals originating from a target direction interfere constructively,
and those from other directions interfere destructively. In ideal conditions, signals in the non-target direction
are nulled by the interference.

Consider a linear array of 8 microphones, each separated by a distance d. For a plane-wave signal originating
at angle θ, we define a steering vector a(θ) as follows:

a(θ) = [a1(θ), a2(θ), ..., aM (θ)]T (1)

= [e−jφ1 , e−jφ2 , ..., e−jφM ]T (2)

The vector defines the phase shifts that are to be applied to each sensor’s signal to isolate sound from the
target direction. The angle φi is dependent on the distance between sensors and the signal’s wavelength λ as
follows:

φi = 2π
d(i− 1) sin θ

λ
(3)

The array’s response to a signal s(t) from a given angle θ can be expressed as follows, where n(t) is noise:

x(t) = a(θ)s(t) + n(t)

The power of the entire array’s output is calculated as

maxE{wHx(t)xH(t)w} (4)

and the optimal weighting vector w is given by:

w0 =
a(θ)√

aH(θ)a(θ)

Finally, the spatial power spectrum P (θ) can be generated.

P (θ) =
aH(θ)Ra(θ)

aH(θ)a(θ)
(5)

R =
1

T

T∑
t=1

x(t)xH(t) (6)

Note that equations (4) and (5) are simplified if a(θ) is normalized.
Once the spatial power spectrum is computed, the angle corresponding to its maximum must be the signal’s

direction of arrival.

3.2 FFT to determine frequency of interest

Before estimating the direction of arrival, we need to find the frequency of interest. While we’ll restrict the
signal’s frequency to a range in which it can be resolved by the array, we don’t want the system to be too
sensitive to deviations from the nominal frequency of the input sound. We will use a Fourier transform on the
incoming input to determine what the peak frequency of the signal is, and we’ll assume that to be the frequency
of interest. For each processing chunk, we will compute a 1024-point DFT with fixed-point arithmetic on just
one of the input channels, assuming the peak frequency will be roughly the same for all channels. Once the
FFT is complete, the bin corresponding to the maximum frequency will be found and stored for later use by the
DOA estimating part of the system. The DE1-SoC’s on-board multipliers for FFT will be used to implement the
Cooley-Tukey FFT algorithm, decimating the signal in time and iteratively solving for the transform.



Figure 2: Microphone Block Design

Figure 3: Stereo-Output I2S Format

4 Hardware/Software Interface

4.1 Microphone Array

4.1.1 Introduction

INMP441 MEMS microphones are used to collect audio signals. The digital microphones communicate with
FPGA through I2S signal with three buses: serial data clock (SCK), serial data word select (SW) and serial data
output (SD). To best utilize GPIO resources on board, two microphones are configured together as shown in
Figure 2. Their timing diagram is shown in Figure 3. Notice that the output word length is 24 bits per channel,
but a stereo pair always has 64 clock cycles for every data word (fSCK = 64 × fWS).

A system is designed to test the microphones in advance, as in Figure 4. This test system bypasses the
FFT module, directly passing the sound data to the Arm Core, where wave files are generated for algorithm
simulation.

4.1.2 Pin Assignment

The board has two 40-pin expansion headers with 3.3V DC and GND pins. In the stereo design, three data wires
are used: SCK, WS, and SD. SCK and WS can be reused in all four pairs. Thus, a total number of 8 pins will be
occupied, two of which are VCC and GND pins.

Figure 4: Test Block Diagram



4.1.3 Pseudocode

The idea of retrieving the I2S data is making use of a 5-bit width counter, which counts to 31 and returns to
0 two times in a period of the WS signal, and outputs the data when the counter number is smaller than 24.
Additionally, a mealy state machine is adopted to change the state between idle (channel), left (channel), and
right (channel). Here is the pseudocode of the SystemVerilog style.

// SCK and WS are generated by 50MHz clk with respect to the sampling rate
module project(input clk, input rst, input SD, output [23:0] left_data, output [23:0] right_data, output SCK, output WS);
logic [23:0] right, left; // Temp memory
logic [8:0] clk_cnt; // Clock counter
logic [4:0] cnt; // Count to 32

always @(posedge clk) begin // Generate SCK
if (rst)

SCK <= 0
else if (clk_cnt == SCK_NUM)

SCK = ~SCK
clk_cnt = 0

else
clk_cnt++

end

always @(posedge clk) begin // Generate WS
if (rst)

WS <= 0
else if (clk_cnt == WS_NUM)

WS = ~WS
clk_cnt = 0

else
clk_cnt++

end

always @(posedge SCK) begin // Decode I2S SD signal
if (rst)

left <= 0
right <= 0

else
cnt++
case (state)

IDLE:
LEFT: if (cnt < 24) left <= {left[22:0], SD} // SD is MSB first.
RIGHT: if (cnt < 24) right <= {right[22:0], SD}

endcase
end

endmodule

4.2 FFT

24-bit data that every microphone collected per sample is truncated to 14 bits and is sent to time series RAM.
After that, all eight flows of data go through a 1024-point FFT.

4.3 Selector

The output of the FFT module will be compared to the pre-calculated result saved in the FPGA to get the angle
and distance.

4.4 Display

We plan to display the location of the sound source in a .png format from the angle and distance data we
acquired.
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