
Design Document for Snake Game

Cristopher Marte (cjm2301), Somya Mehta (sm5169),

Rohan Rabbi (mr4280), Saher Iqbal (si2443)

CSEE4840 Embedded System Spring 2024

Content

1. Introduction 1

2. System Block 2

3. Project Algorithm 3

4. Resources 5

5. Hardware/Software 6

1

Introduction

Our project aims to create a 2D grid-based game with dimensions of 625 pixels by 625 pixels.

The game will be controlled using a joystick and will output visuals on a VGA display, refreshing

at a rate of 60 frames per second (60fps). The software's primary functionality involves updating

the positions of the snake, food, and score on the grid in real time, ensuring smooth gameplay

and accurate feedback to the player. https://en.wikipedia.org/wiki/Snake_(video_game_genre)

Figure 1: Python Code (prototype)

https://en.wikipedia.org/wiki/Snake_(video_game_genre)

2

System Block Diagram

Figure 2: Block diagram

Python

3

Project Algorithm

The game will simultaneously wait for input from the Joystick to change direction while still

updating the position of the snake from the current velocities.

1. change_direction():

a. This will handle input events to change the direction of the snake while updating

the velocity in the x and y directions based on the input given.

2. move_snake():

a. This function will update the position of the snake based on its current direction and will

return if the game_over bool is set to true which can happen if the snake head

collides with the window boundaries or if the snake head collides with its own

body. This function will also update the score every time the snake head collides

with a food item on the game grid while generating a new one randomly.

3. Draw ():

a. The Draw function clears the game grid and then redraws the snake, food, and

score based on the updated values. If the game is over, the game will display the

final score.

def move_snake():
global snake, snake_body, food, game_over, game_score

if(game_over): # Exit the function if the game is over(No need to move the
snake after game over)

return

Detect collision with the window boundaries
if (snake.x < 0) or (snake.x >= WINDOW_WIDTH) or (snake.y < 0) or (snake.y >=

WINDOW_HEIGHT):
game_over = True
return # Exit the function if the snake hits the window boundaries (Game

Over)

for tile in snake_body:
if (snake.x == tile.x) and (snake.y == tile.y):

4

game_over = True
return # Exit the function if the snake hits itself (Game Over)

Detect collision with snake head and food
if (snake.x == food.x) and (snake.y == food.y):
snake_body.append(Tile(food.x, food.y)) # Add a new tile to the snake body
food.x = random.randint(0, COLS-1) * TILE_SIZE # Random x position of the food
food.y = random.randint(0, ROWS-1) * TILE_SIZE # Random y position of the food
result = generate_food(snake_body) # Generate a new food position
game_score += 1

Move the snake body
for i in range(len(snake_body)-1, -1, -1):
tile = snake_body[i]

if (i == 0): # Move the first tile of the snake body to the snake head's
position

tile.x = snake.x
tile.y = snake.y

else: # Move the rest of the tiles to the previous tile's position
tile.x = snake_body[i-1].x
tile.y = snake_body[i-1].y

snake.x += dx*TILE_SIZE # Move the snake by dx Tiles (625 px)
snake.y += dy*TILE_SIZE # Move the snake by dy Tiles (625 px)

Figure 3: Snippet of Python Implementation

5

Resources

Our VGA monitor has a resolution of 625x625 with a refresh rate of 60fps. We assume the tile

size to be taken as 8x8. The resource budget is as follows:

Category Dimensions Number of Bits

Snake Body 250 x 8 x 8 16000

Food 8 x 8 x 10 (10 food particles
on screen at a time)

640

Score 16 x 16 x 3 768

Frame Buffer (8-bit color
depth, single buffer)

625×625×8 3125000

Total 3142408 bits

6

Hardware/Software requirements

1. Hardware

a. DE1-SoC FPGA Board:

Figure 4: Pin Out for DE1-Soc Board

b. VGA Output Display

i. The visual setup will include a plain background color, with a contrasting

shade (like blue) utilized to clearly mark the boundary walls, the snake

will be depicted in a vibrant lime color, while the fruit (apple) will be

represented in a striking red.

ii. We will include a pause screen and a game-over screen as part of the GUI.

c. Joystick

i. We would only need the d-pad from any Xbox controller or PlayStation

controller where the start would pause/unpause the game.

2. Software

a. To create the game logic, we will use SystemVerilog, this will allow us to describe

the digital circuitry of our game, including the processing units, memory

elements, and input/output interfaces.

