
Adrian N Florea (anf2143), (anr2157), (bvc2106)Alexander Ranschaert Brandon Vidal Cruz

Sequencer: Design Document

Introduction
A step-sequencer is an essential part of every basic modular synthesizer setup. A fixed pattern
of a certain number of steps is repeated in a loop. The musician can decide whether to enable
or disable each step and which note to play at that step during the setup phase. He can also
change the number of steps/beats that are played per minute (BPM).

The embedded sequencer will have 2 modes: the recording mode and the playback mode.
During the recording mode, each step in the 16-step sequence can be configured to play notes
or a chord using a MIDI-keyboard. After all the steps have been recorded, the playback mode
can be enabled and the sequence will be fed to a speaker.

Block Diagram
The diagram below gives a high-level overview of the architecture of the embedded sequencer.
Each module will be discussed in more detail below.

1

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu


Adrian N Florea (anf2143), (anr2157), (bvc2106)Alexander Ranschaert Brandon Vidal Cruz

Modules & HW/SW Interfacing

WM8731 Setup
The CODEC driver will be responsible for setting up the Wolfson Audio Codec using the I2C
serial communication standard. The chip’s complete register map is shown below.

The chip will be configured as a slave mode device (R7, B6), so that it responds to
external clock signals (DACLRC and BCLK) to internally transfer the samples applied to
DACDAT.

The sample operation mode will be ‘normal’ (opposed to USB that can use the 12MHz
USB clock), so that the sampling rate can be set to 48 kHz, which requires a master input clock
(MCLK) of 12.288MHz. This clock signal will be derived by the CODEC driver module. The
skeleton code for this will be a tutorial that was provided by UToronto (see references).

An overview of what the registers are set to is also given below.

WM8731 Full Register Map

WM8731 in slave mode Left Justified Mode (MSB First)

Register Addr + Data (HEX) Explanation

R0 0040 Mute (open switch to ADC)

R1 0240 “

2

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu


Adrian N Florea (anf2143), (anr2157), (bvc2106)Alexander Ranschaert Brandon Vidal Cruz

R2 047B Set output headphone volume to 0dB (left)

R3 067B “

R4 0802 Mute mic, disable bypass

R5 0A0E Enable 48kHz de-emphasis, DAC soft-mute

R6 0C67 Power down oscillator, clkout, ADC, mic in and bias, line in

R7 0E09 Slave mode, left justified MSB first, 24 bit input

R8 1000 Config. 48kHz sampling rate, 12.288MHz MCLK

R9 1201 Activate the Digital Audio Interface

3

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu


Adrian N Florea (anf2143), (anr2157), (bvc2106)Alexander Ranschaert Brandon Vidal Cruz

User Interface

Avalon Interface
The user will provide several inputs from both the user interface using the buttons and switches,
as well as from the MIDI keyboard. The user interface will allow the user to determine the BPM,
step, channel, and mode (playback or record). When information about the BPM, step, and
channel change, it will be transferred from hardware to software using a device driver in order to
build the sequence that the user wishes to play. Moreover, the MIDI interface will provide the
notes that will be generated at the step. Once the user is finished creating the sequence, the
audio will be generated using information from the notes, as well the information from the user
interface. In order to send the generated audio from software to hardware to be used by the
CODEC, a driver will be used to send 24-bit messages corresponding to the step that is being
output. The sampling rate that we are using is 48kHz, and so a new 24-bit message must be
provided to the CODEC corresponding to the sampling rate. The vga_ball code and process will
provide a template for these drivers.

User Interface Driver Registers

4

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu


Adrian N Florea (anf2143), (anr2157), (bvc2106)Alexander Ranschaert Brandon Vidal Cruz

Register Bit Width/ Data
Type

Explanation

R0 16 (unsigned short) BPM (supports a BPM of 50-300 )

R1 8 (unsigned char) Channel (1-4 corresponding to the different wave types)

R2 8 (unsigned char) Step (1-16 corresponding to each step)

R3 8 (unsigned char) Mode (Playback or Recording)

CODEC Driver Registers

USB-MIDI
MIDI is a communication protocol established to communicate between MIDI devices such as
most digital electronic instruments. A majority of MIDI messages consist of multi-byte packets
beginning with a status byte followed by one or two data bytes. MIDI supports critical features
for musical instruments such as keypresses, releases, velocity, and aftertouch.

Most computers do not directly support MIDI without an audio interface or USB-MIDI converter.
Eventually, a MIDI specification was developed for USB that included the Audio class of devices
[3]. USB-MIDI supports baud rates much the 31.2k baud rate of MIDI in order to handle many
virtual cables worth of MIDI data [4]. We will use a baud rate of 115200 in our system.

USB-MIDI transfers data continuously using 32-it USB-MIDI event packets illustrated in the
image above. The first byte is a packet header that contains a cable number and code index
number while the next three bytes contain the actual MIDI event. The three USB-MIDI event
packets virtually maintain the same information structure as the original MIDI events.The code
index number (CIN) indicates the classification of the bytes in the MIDI_x_fields. The following

5

Register Bit Width/ Data
Type

Explanation

R0 32 (unsigned int) Current Sample (only bottom 24 bits will be used)

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu


Adrian N Florea (anf2143), (anr2157), (bvc2106)Alexander Ranschaert Brandon Vidal Cruz

tables summarizes the three CIN codes we plan to decode in this project as well as the MIDI
messages.

When a step is recorded for the sequencer, our software will decode USB-MIDI messages to
record the note or notes played during the recording window as well as the velocity. These
messages will be stored as arrays that the user level program will use to generate sound
waveforms and control the sequence.

Algorithms
We plan to use 4 channels that the user can separately interact with to create a musical step
sequence. These channels will be controlled by the user space program and will generate the
output waveform in real time and send the waveform information to the avalon bus for the Audio
Codex to process. The channels will modulate a sine, square, triangle, and sawtooth waves
based on their respective note value and volume. The frequency of the waveform will be
determined by the pitch table shown below.

6

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu


Adrian N Florea (anf2143), (anr2157), (bvc2106)Alexander Ranschaert Brandon Vidal Cruz

Our user level program will calculate the waveform of the 4 channels and mix them via an
attenuator to prevent clipping and sum the channels into one stream that will be sent to the
avalon bus.

7

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu


Adrian N Florea (anf2143), (anr2157), (bvc2106)Alexander Ranschaert Brandon Vidal Cruz

Resource Management
Because the samples are not going to be transferred to the FPGA as a whole but rather as they
are needed, there will not be a significant amount of resources used and so this will not be a
concern for our project at the moment.

References

[1] Wolfson WM8731/WM8731L Audio CODEC
[2] UToronto DE1-SoC tutorial
[3]https://midi.org/basic-of-usb#:~:text=In%201999%2C%20the%20MIDI%20specificatio
n,says%20USB%2DAudio%20devices%20connected.
[4] https://www.usb.org/sites/default/files/midi10.pdf
[5] https://cmtext.indiana.edu/MIDI/chapter3_channel_voice_messages.php

8

mailto:anr2157@columbia.edu
mailto:bvc2106@columbia.edu
mailto:bvc2106@columbia.edu
https://www.cs.columbia.edu/~sedwards/classes/2008/4840/Wolfson-WM8731-audio-CODEC.pdf
https://www-ug.eecg.toronto.edu/msl/manuals/tutorial_DE1-SoC.v5.1.pdf
https://midi.org/basic-of-usb#:~:text=In%201999%2C%20the%20MIDI%20specification,says%20USB%2DAudio%20devices%20connected
https://midi.org/basic-of-usb#:~:text=In%201999%2C%20the%20MIDI%20specification,says%20USB%2DAudio%20devices%20connected
https://www.usb.org/sites/default/files/midi10.pdf
https://cmtext.indiana.edu/MIDI/chapter3_channel_voice_messages.php

