
1 
 

MARIO 

 

            V 

 

      BOWSER 

 



2 
 

                 BO KIZILDAG  

:: bk2838 

    BRANDON KHADAN 

:: bk2746 

          NICHOLAS VIDAL de la CRUZ 

:: nvd2109 

 

EMBEDDED SYSTEMS 

PROF. EDWARDS 

SPRING 2024 

 

Project: MARIO, FINAL LEVEL ON FPGA 

 

 

 

                                                                      .DESIGN.      



3 
 

 

 

 

 

 

 

 

 

 



4 
 

Overview             

 

The aim of the project is to make and implement a final level of the 

original Mario on the FPGA module. This will consist of the level preceding 

the boss fight and will transition to the boss fight at the successful run of 

the level. Our intention is to have fun building a Mario game, but also do 

something novel as others who built Mario on FPGAs have always done the 

first (iconic) level. The Bowser level and the boss fight will be a novel take 

on a Mario project with the aim of presenting an even more iconic Mario 

experience against the series’ defining villain. 

 

 



5 
 

Outline             

 

● 2D Side-scrolling 

○ Mario will stay at the center of the screen during movement 

 

● Hit Box Detection 

○ Mario will be blocked by the ground and walls. Enemies and coins 

will execute their interaction when hitting Mario 

 

● Audio Output 

○ The game will have BGM and audio effects (jump, enemy killed, coins) 

 

● Animation 

○ Score animation, death animation, kill animation, movement animation, 

and impact animation (each will be done by its respective image) 

 

I / O Device            

 

● Video Output: VGA 

● Audio Output: Audio jack 

● Controller Input: Keyboard 

 



6 
 

Platform             

 

 

FPGA (from Intel) 

 

Audio setup (from Intel) 



7 
 

LOGIC             

 

 

Early diagram of an example level layout (Fig. 1) 

----------------------------------------------------------------------------------------------------------------------------------------------------- 

 

 

 

Movement logic diagram (Fig. 2) 



8 
 

 

 

Gameplay logic diagram (Fig. 3) 

 

 



9 
 

 

 

Visual logic diagram (Fig. 4) 

----------------------------------------------------------------------------------------------------------------------------------------------------- 

 

 

 

Sprite generation diagram (Fig. 5) 

 

VGA 



10 
 

 

 

Audio logic diagram (Fig. 6) 

----------------------------------------------------------------------------------------------------------------------------------------------------- 

 

 

SD audio module block diagram (Fig. 7) 



11 
 

 To read data, set the rd wire high when the sd_controller signals readiness. 

SD cards are segmented into 512-byte sectors; hence, to access subsequent 

sectors, increment the address by 512 aŌer reading 512 bytes. To write new 

bytes from the sd_controller to the FIFO, toggle wr_en to 1 on the 

byte_available signal's rising edge and to 0 otherwise. Given the FIFO's 

limited capacity, prevent overflow—potenƟally losing audio data—by 

halƟng reads (seƫng the rd signal to 0) when its data_count exceeds 1024. 

For audio output, data is read from the FIFO at 64 kHz, necessitaƟng a 

counter to trigger rd_en every 1562 cycles (about 10,000,000/64,000) for 

efficient data transfer to the aud_pwm module. 

 

MAKING THE SOFTWARE AND HARDWARE TALK       

 

 

 

 

 

 

 

Keyboard 
input 

<MARIO> 

USB AVALO
N

 
BU

S 

vga 
module 

VGA OUT 

SOFTWARE 

HARDWARE 

AUDIO 
OUT 



12 
 

BUDGET             

 

Component Memory (bits) Memory (KB) 

Tile Map 12,000 1.46 

Tileset Graphics 262,144 32.00 

Sprite Graphics 10,240 1.25 

Game Logic 262,144 32.00 

Audio 524,288 64.00 

Total Memory Budget: 1,070,816 bits (approx. 1.02 MB) 

 

 

 

 

 

 

 

 

 

 

 



13 
 

MILESTONES             

 

1. Finish keyboard inputs and background visual including side scrolling 

2. Complete sprite interactions/effects (sound, animations, etc.) 

3. Complete the sprite AI and level design and test/debug for final product 

 

(The exact milestone to-dos for the progression tracking will be discussed 

with the TA in our upcoming meeting) 

 

Progression 

Split off relevant tasks 

At each stage assign relevant tasks and responsibilities to team members for 

implementation or alternatively assign larger stages for individual 

implementation. 

 

Hardware Configuration 

Completely encode keyboard input into distinguishable and identifiable 

inputs, implement and test and audio/VGA output from the DE1-SOC FPGA.  

 

Sprite Movements/Effects 

Attach the simple movements for the main sprite from the UI keyboard. 

Design and implement animations for the sprites based on keyboard inputs 

and environmental interactions. Complete hit registration for sprite 



14 
 

interactions with environment/other sprites, implement relevant sound 

effects and audio as well as animations for distinct types of interaction. 

 

AI Development 

Implement AI for non-user controlled elements in movement. First address AI 

that deals with static movement/actions irrespective of user/sprite 

movement, then work with AI that responds to current user/sprite location 

and movement in real time. 

 

Level Design 

Implement full level design. Assign sprites to specific locales, add audio 

cues based on location in level, and add final boss stage that renders rest 

of level inaccessible and has special functions. 

 

Testing and Debugging 

Test individual features and movement, first in expected base cases and 

then edge cases for input/output, movement, interaction, and AI. 

Subsequently test full run through of level, attempting to source errors 

within the design/stages.  

 

 

 

 

 



15 
 

NOTE 

 

With the design process ongoing, any part is subject to change in 

accordance with the main goal of creating Mario final level + boss fight on 

the FPGA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

Thank you for reading our design document, we are looking forward to 

amazing you with our game! 

 

 

 

 


