BOWSER

BO KIZIIDAG

bk?2838

BRANDON KHADAN

bk27406

NICHOAS VIDAl de la CRUZ

nvd2109

EMBEDDED SYSTEMS
PROF. EDWARDS

SPRING 2024

Project: mﬂ”IOo flﬂﬂl lfyfl O” fl’Gﬂ

DESIGN

Overview

The aim of the project is to make and implement a final level of the

original Mario on the FPGA modvule. This will conrist of the level preceding
the boss fight and will transition to the boss fight at the successful run of
the level. Our intention is to have fun building a Mario game. but also do
something novel as others who built Mario on FPGAs have always done the
first (iconic) level. The Bowrser level and the boss fight will be a novel take

on a Mario project with the aim of presenting an even more

against the series’ defining villain.

Outline

o 2D Side-scrolling

o Mario will stay at the center of the screen during movement

o Hit Box Detection
o Mario will be blocked by the ground and walls. Enemies and coins

will exccute their interaction when hitting Mario

e Audio Output

o The game will have BGM and audio effects (jump. enemy killed. coins)

o $core animation., death animation, kill animation. movement animation,

and impact animation (each will be done by its respective image)

1/ O Device

e Yideo Output: YGA
e Audio Output: Audio jack

e Gontroller Input: Keyboard

Platform

B rrca

Systen

Line Line
In Out

JTAG Header

Audio Codec
Video Decoder
PS2 —em

USB-Blaster || - 5=

2x20 GPIO x2
Power DC Jack

- Altera 28-nm

Power ON/OFF v. _‘M%,ymﬁ é;i?ﬁg
64MB SDRAM
ADC . iy
ADC Header '5‘:0 X
7-Segment Display '
LED x10 E R 5 : | ¥ &
il =
FRARRAREFTE IR-out
- .] Lol bt bl bt £ A] —— |R-in
Switch x10 Button x4
FPGA (from Intel)
(K]
WM8731

AUD BCE »| XTI/MCLK Mic In]
J1

‘ ~ <AUD_BCLK N N— ‘

A A AUD_DACDAT

ZEEE &. = »| DACDAT Line In .I Y

J2
AUD_DACLRCK
yc'oneg - »{ DACLRCK
c sSocC’ s AUD_ADCDAT

o < = ADCDAT Line Out _ 1

'~ J3
A AUD_ADCLRCK » ADCLRCK

VGA Out

VGA
Video-In 24-bit DAC

Avdio setup (from Intel)

LOGIC

Early diagram of an example level layout (Fig. 1)

Mario has jumped a
certain height or his
top edge collides

Jump input

collision on
the top edge

Mario's right edge Right input
collides with and no

something collision on
the right

Mario's top edge
collides with
something

o collision on the
bottom edge (Mario
has nothing beneath
him

Right and
jump input
and no
collision on
the right and
top edges
edge

UP/ RIGHT

Movement logic diagram (Fig. 2)

-» Start Game

Delay +.user input

Pause
Game Play -y Pause
’ Game
out of lives

Gameover

Gameplay logic diagram (fig. 3)

position & velocity

Enable Object Update Location Mario Generation

Updates an enable array Stores information about includes 8-bit Mario
with objects that have each object in the generation (left or right)
absolute position in camera map/level and updates cc
A S ive X's - SEA A

o c] ©c o > o §g € -
g2) 5 S 28| 8 835|323 2
E® o 5 g = Sa|§ g 8 a
88 z 88 2 o T © S

S vy v X == v

Vs

Clock, Reset Sprite Pipe|ine; 1. Stores map layout and object locations. Updates relative locations as camera moves along.
= 2. Contains logic hierarchy for displaying objects when they overlap.
camera position
hiv count L
- A 4
° €
3 2 obj. enable array §
a|Y object rel. >
2 X,y, width, s
height
Y
(Object Generation Modules

h/v count. There is an Object Generation Module for each unique type of

Generates Sprite address depending on rel. location, width, height, and
object, such as cloud or pipe.

pixel
sprite
address

<

(Sprite ROMs or Modules }

Virval logic diagram (fig. 1)

pixel

VGA

(e :
parameter: width ——»| SPrite Generation Module

parameter: height ———»{ Use color maps generated from [———> [11:0] pixel_out
clock > COE to determine contentof | o

X_position —>| module using case statement for
y_position ————3» memory-free sprite generation
hcount_in —>
veount_in —>

%2 =

pixel_out or color pixels in

Sprite generation diagram (fig. 5)

is_object

/ \
= \
o sd_audio_extractor h »ad. cmd
~— clk_100mhz »| Extracts SD card data and pushes into FIFO, reads out FIFO and pushes into »sd_reset
sd_cd »| audio_pwm »sd_sck
[3:0] sd_dat mud_pwm
[15:0] sw >
L. * T »,
clk_25mhz rd en [7:0))
31 o1 wr [701 bvle available J fifo._ '" 0:0] {7:0] music_data
waddro Wr nl data oounl [7 0] l
fifo_out I
sd__controller w (FIFO]—J (aud_pwm w
- Reads data from SD card Holds data from SD card, Converts output data from
to be read from at a rate of FIFO into signal to send to
64 kHz aud_pwm
\ G /
< /
o =
, < S
Avdio logic diagram (fig. 6)
] - \
Start: Space Check |« N Start: Check for 1562
cycles
data_count < 1024 data_count >= 1024 1
check for sampling rate complete
< (rd=0 ~— Read From FIFO
data_count <1024
-~ 7
h 4
Output to PWM
Check Bytes Read Write to FIFO L)
byte_available
rising edge
l i
512 bytes re:

address incremented

Next Sector:

Increment Address

ISP avdio module block diagram (fig. 7)

increment bytes_read—/

= To read data, set the rd wire high when the sd_controller signals readiness.
SD cards are segmented into 512-byte sectors; hence, to access subsequent
sectors, increment the address by 512 after reading 512 bytes. To write new
bytes from the sd_controller to the FIFO, toggle wr_en to 1 on the
byte_available signal's rising edge and to 0 otherwise. Given the FIFO's
limited capacity, prevent overflow—potentially losing audio data—by
halting reads (setting the rd signal to 0) when its data_count exceeds 1024.
For audio output, data is read from the FIFO at 64 kHz, necessitating a
counter to trigger rd_en every 1562 cycles (about 10,000,000/64,000) for

efficient data transfer to the aud_pwm module.

MAKING THE SOFTWARE AND HARDWARE TAWK

<MARIO>
Keyboard > SOFTWARE
input USB
>
>
—
@]
Z
VGA OUT
vga >
module
J. HARDWARE
AUDIO

ouT

BUDGET

Component
Tile Map
Tileset Graphics
$prite Graphics
Game logic

Audio

Memory (bits)
12.000
262.144
10.240
262.144

5241.288

Memory (KB)
1.46

32.00

1.25

32.00

64.00

Total Memory Budget: 1.070.810 bits (approx. 1.02 MB)

MILESTONES

1. Finish keyboard inputs and background visual including side scrolling
2. Complete sprite interactions/effects (round. animations. ete.)

3. Complete the sprite Al and level design and test/debug for final product

(The exact milestone to-dors for the progression tracking will be discussed

with the TA in our upcoming meeting)

Progression
Split off relevant tasks

At cach stage assign relevant tasks and responvibilities to team membets for
implementation or alternatively assign larger stagers for individual
implementation.

Hardware Configuration

Completely encode keyboard input into distinguishable and identifiable
inputs, implement and test and audio/VGA output from the DEI-SOC FPGA.

Sprite Movements/Effects

Attach the simple movements for the main sprite from the Ul keyboard.
Design and implement animations for the sprites based on keyboard inputs

and environmental interactions. Complete hit registration for sprite

interactions with environment/other sprites. implement relevant sound

cffects and audio as well as animations for distinct types of interaction.

Al Development

Implement Al for non-user controlled elements in movement. First address Al
that deals with static movement/actions irrespective of user/sprite
movement, then work with Al that responds to current user/sprite location
and movement in real time.

level Design

Implement full level design. Assign sprites to specific locales, add auvdio
cues based on location in level. and add final boss stage that renders rest

of level inaccesrsible and has special functions.

Testing and Debugging

Test individual features and movement, first in expected base cases and
then edge casers for input/output,. movement. interaction. and Al.
Subsequently test full run through of level. attempting to source errors
within the design/stages.

11

NOTE

With the design process ongoing. any part is subject to change in
accordance with the main goal of creating Mario final level + boss fight on
the FPGA.

Thank you for reading our design document. we are looking forward to

amazing yov with our game!

a2 TI
200000

THANK YOU MARIOD?*

21

|1 c

16

