
Columbia University
Fu Foundation School of Engineering and Applied Science

Acceleration of Digit Classification Using Custom

CNN on a SoC FPGA

CSEE 4840 - Embedded Systems

Design Document

Tharun Kumar Jayaprakash (tj2557)

Vasileios Panousopoulos (vp2518)

Prathmesh Patel (pp2870)
Rishit Thakkar (rht2122)

Spring 2024



1 Introduction

This project presents an approach to digit classification leveraging the DE1-SoC FPGA board.

The aim is to implement a fast solution for real-time digit recognition using the MNIST dataset and

a simple convolutional neural network (CNN) architecture. The FPGA environment offers unique

advantages for accelerating computationally intensive tasks like image processing. Through the

utilization of SystemVerilog, the CNN model will be implemented directly on FPGA hardware,

exploiting the parallelism and inherent efficiency of hardware-level computations. A critical aspect

of this project is integrating a camera module with the system. This setup enables the capture

of real-world handwritten digits for classification directly on the FPGA. The system will output

the predicted class of the digit, providing a seamless and efficient solution for digit recognition

applications. By showcasing the practical implementation of machine learning models on FPGA,

particularly in the context of image classification, this project aims to demonstrate the feasibility

and effectiveness of FPGA-based solutions for accelerating applications in the field of computer

vision and pattern recognition.

2 Proposed System

2.1 Algorithm: CNN System

Since the primary objective of the project is to just implement a simple network, rather than

training a network from scratch, an existing trained network can be leveraged. This network is

similar to proven architectures, such as LeNet, and is a lightweight network made of 2 convolutional,

2 max-pooling, and 1 dense layer. The general network architecture can be seen in Figure 1.

Figure 1: Model General Architecture

We retrained the model with QKeras, making the quantization bit width for weights and biases

as eight (4 for integer part, 4 for fractional part) and got a testing accuracy of 95%. The total

number of parameters in the network will equal 3,438 and will be stored on the on-chip memory in

the accelerator. The input image, sized at 42 x 42 pixels(1Byte wide), undergoes the initial convo-

lutional layer, yielding four output channels. Subsequently, the image is further processed through

a second convolutional layer, with four input and output channels, and employing a 3x3 kernel for

feature extraction. Max-pooling layers, with 2x2 kernel size, are integrated into the architecture

to downsample the feature maps, facilitating computational efficiency while preserving essential

features. After flattening(324 neurons), the network has a fully connected (dense) layer comprising

ten output units corresponding to the ten distinct classes in the dataset. Throughout the archi-

tecture, Rectified Linear Unit (ReLU) activation functions are used to introduce non-linearity and

1



enable efficient gradient propagation. This design ensures a balance between computational effi-

ciency(Resources) and performance, making it well-suited for deployment on the DE1-SoC FPGA.

2.2 Use Case

The goal of this project is to implement an interactive real-time application. Specifically, the

user will be directly involved in the data pipeline by drawing a single digit on a blank paper.

This paper will then be sampled by a camera sensor connected with the DE1-SoC Board and the

captured frame will be processed by the SW/HW system to classify the drawing into one of the

10 different classes-digits. The result will then be provided back to the user through the terminal

of the local PC.

3 System Implementation

3.1 System Dataflow

The proposed system will be based on SW/HW Co-Design methodology, where the Software

and Hardware sides of the SoC will need to communicate effectively to produce the expected result.

A high-level block diagram of our system is given in Figure 2.

Figure 2: High-Level Block Diagram

The hardware side of the SoC will consist of 2 basic modules. The Input Block will implement

the camera driver and will be instructed to read a frame once an on-board switch is toggled. Then,

it will store the image in a predefined address space and will notify the processor that an image is

available. The C program will in turn configure and execute the second hardware module, called

Computation Block, multiple times to perform the necessary calculations throughout the network

2



pipeline. Once the last layer is executed, the C program will send the selected class (digit) to the

user through the local terminal, as done in Lab 2.

3.2 Computation Block Architecture

The main feature of the proposed system is the implementation of the CNN architecture on the

FPGA side of the SoC. More specifically, in order to achieve inference acceleration on hardware, we

will design a module that can be configured by the software in run-time to perform the computations

required by the convolutional layers, the max-pooling layers, and the output linear layer. The

microarchitecture of the proposed module is shown in Figure 3.

Figure 3: Hardware System Microarchitecture

A Control Unit (CU), implemented as an FSM, will be the front end of the HW module and

will be responsible for communication with the C program. In particular, once data required by

the network’s layer are available in the respective memories, the C program will initialize the HW

module and will provide the appropriate configuration information. The input signals consist of

a layer index and 3 memory indices. The Layer Index indicates which layer will be run by the

module, i.e., one of the two convolutional layers, one of the two max-pooling layers, or the output

linear layer. This signal will be used internally by the CU to select which memories will be accessed

for input data and which for results and to determine the timing details of how the computation

kernel will be controlled. Regarding memory indexing, the system will use two different memory

spaces, Memory A and Memory B, for storing the input and output data of each layer. For

instance, while the first convolutional layer will see the input image in Memory A and will store

the computed feature maps in Memory B, the max pooling process that follows will read its inputs

from Memory B and will store the decimated data in Memory A. Regarding the control of the

computation kernel, it is clear that each layer needs to process different amounts of data. For

example, the first convolutional layer processes 42x42 pixels while the max pooling layer needs

to access 40x40x4 pixels, which means that the number of cycles the CU should wait in order to

enable writing to the Result Memory (the valid result) differs across different executions of the

HW module (different layers).

The Computation Kernel is responsible for performing the arithmetic operations required by

each layer. On the one hand, the convolutional and linear layers need to perform large numbers of

multiplications and additions, which can be easily done by a Multiplier-Accumulator Unit. On the

other hand, during max pooling, 4 different numbers are compared, and the highest is selected.

The microarchitecture of the Computation Kernel is displayed in Figure 4.

As explained, this kernel will be configurable to be able to perform all of the operations required

3



Figure 4: Computation Kernel Microarchitecture

by a CNN. The configuration is controlled by the CU through the Mode signal, which determines

whose subsystem’s result is passed through the output multiplexer and written to the result mem-

ory. As shown, the first subsystem will be used when executing a convolutional or linear layer,

while the second subsystem will be used to implement the max pooling layers. In the first case,

the MAC Unit receives the input data and weights in consecutive cycles to calculate the layer’s

output. Since both the input data and weights will be represented by 8 bits, the result of each

multiplication will be 16 bits wide. Considering the fact that these partial results will be small

numbers, their accumulation can be modeled with 16 bits without loss in accuracy. Once the

layer’s result is calculated and quantized by retaining its middle 8 bits, a MUX controlled by the

result’s MSB performs the ReLU operation, as its output will be either 0 if the MSB is 1 (negative

number) or the original result if the MSB is 0. In the second case, a 2-number comparator will

be used to extract the highest number from a 2x2 window in 4 cycles. In both cases, the CU is

responsible for enabling writing to memory by asserting the respective signal in the correct cycle.

Finally, once the required operations of the layer are completed, the Control Unit will inform

the processor about the event by writing to a specific register and will move to an Idle state.

3.3 The Hardware/Software Interface

Upon startup of the FPGA, the software module will be responsible for initializing and config-

uring the camera. A register will be set to 1 to trigger the camera hardware module to send the

configuration writes to specific registers. These values will be based on parameters such as clock

speed, image capture mode, and desired resolution. The camera configuration and operation are

described in subsequent sections.

To listen for user input, a switch will be used as a toggle signal, which will trigger the software

program to initiate the accelerator when the user has finished drawing their number. To initiate

the calculation in each layer, the C-based software will send a go signal, along with layer index,

4



and addresses of the appropriate weight, bias, and input data location. This software will also look

for the done signal to write to another reserved register, which will signal the software to move to

the next layer in the CNN architecture.

Finally, when the last dense layer has finished its calculation, it will write the resulting 10

probabilities, corresponding to each class, in 10 separate registers. The software program will read

these values, determine the class with the highest probability, and print that result on the terminal.

The IOCTL system call and Intel Avalon Bus will be used to transfer the data between the

software and hardware layers.

4 OV7670 Camera

The OV7670 camera, shown in Figure 5, is a lightweight module based on the Serial Camera

Control Bus (SCCB) protocol, which is a subset of the I2C protocol. It has 18 pins with the

configuration seen in Figure 6. Similar to I2C, SCCB has a XCLK signal, which is supplied by the

master device to synchronize the data transmission of the slave. In exchange, the module uses the

PCLK signal, in conjunction with the D0-D7, data lines to supply an output of 8 bits. Since our

application requires single-channel grayscale input, the YUV configuration can be used to configure

the camera and retrieve the output image. The luminescence value can be retrieved from the Y

component of this format, and used as grayscale intensity of an individual pixel.

Figure 5: OV7670 Camera Module

The data will arrive in the configuration shown in Figure 7. The U and V fields are shared

between every two pixels; therefore, to reconstruct a pixel into RBG values, the operation will have

to be done in pairs. However, since our model requires grayscale images, we can ignore this format

and sample the Y value without any further calculation. The sequence of data arrival is shown in

Figure 8, along with the high-level VGA timing shown in Figure 9. It can be observed that the

tp is twice the time of tpclk, due to the shared use of U and V fields between adjacent pixels.

From this incoming data stream, every alternate byte can be stored, which will correspond to the

Y value of every pixel.

As described in the CNN model architecture, the input image size is 42x42. To achieve this,

the DSP unit on board the OV7670 will need to be leveraged. As seen in Figure 10, the default

resolution of the camera is passed into the downsampling unit, which reduces the resolution by 1/8,

and the subsequent digital zoom-out unit will resize the horizontal and vertical sizes to achieve the

42x42 size for the model. The hex values for configuring the horizontal and vertical scaling can

also be seen in the diagram. There is a combination of device control registers, which will need to

be configured upon startup by the software, to achieve the final resolution. These include COM3,

5



Figure 6: OV7670 Pinout

Figure 7: YUV Pixel Data Arrangement

COM14, SCALING XSC, SCALING YSC, SCALING DCWCTR, SCALING PCLK DIV, REG74, and REG75. This

step will occur only once during startup by the camera hardware module.

5 Resource Budgets

The OV7670 Camera module has a resolution of 640x480 pixels, and each pixel is 16 bits(2

Bytes), which is huge for the on-chip FPGA memory provided by the DE1-SoC, i.e. 256KB

(BRAM). However, after employing the down-sampling and digital zoom-out, we will achieve a

resolution of 42x42, and taking the image in YUB format, incorporating just the luminance/bright-

ness will give 8 bits(1 Byte) for a pixel, making the image frame(1,764 bytes) stored in the on-chip

BRAM. For the weights and biases of the model, we are representing those in 8 bits(4 for integer

part and 4 for fractional part). The total trainable parameters of the model are 3,438 (total num-

ber of weights and biases), with each 8-bit wide, making it 3,438 bytes of memory for the weights

and biases. Also, the MAC unit of the Computation Block will be mapped to a DSP unit so that

the operations can be performed efficiently.

6



Figure 8: YUV Data Arrival Sequence

Figure 9: VGA Timing Based on OV7670 Datasheet

7



Figure 10: Resize Logic in OV7670

8


	Introduction
	Proposed System
	Algorithm: CNN System
	Use Case

	System Implementation
	System Dataflow
	Computation Block Architecture
	The Hardware/Software Interface

	OV7670 Camera
	Resource Budgets

