
Guitar hero
Patrick Cronin pjc2192, Kiryl Beliauski kb3338, & Daniel Ivanovich dmi2115

Overview
For our final project, we are going to remake guitar hero, controlled by the original guitar-shaped

adapter for the Wii controller. We will communicate with the guitar using a USB adapter for Wii

accessories, which will require reverse-engineering the protocol used to encode the state of the

guitar. The input from the player will be debounced and passed onto the game logic, which will

also control our VGA and audio outputs. Our audio output will use the Wolfson CODEC to

communicate with the speakers.

System Block Diagram

Algorithms
The guitar controller will be constantly logging inputs from the player. After

reverse-engineering how our Wii accessory USB adapter encodes the state of the guitar, this

processing logic will be written into a Note Decoder, which will interpret changes in the state of

the guitar. The received state will then be passed to the Avalon bus to be read into the game

logic. The Note Decoder will also work with a Signal Debouncing module to ensure we only

update the game logic when there are meaningful changes in controller state.

The game logic will process player input like the original game. If the player strums too

early, too late, or without all the right notes, they will miss and be penalized. If they strum

correctly (within a certain time interval), they will hit. The main focus and challenge of the game

logic will be coordinating the timing. The VGA output, guitar input, and audio all have to be

synchronized, so delays in sending messages to the hardware components must be accounted for.

Regardless of the player input from the guitar, the vga will be continually displaying the

current and following chords to play. These notes will enter from the top of the screen and

proceed downward toward the play line at the bottom of the screen. The changing notes will

appear along a constant background. The background of the display will be hardcoded in Verilog.

There are 5 basic notes (represented by multicolor circles) and they move across the screen so we

will be using sprites to depict the notes and center coordinates to control their velocity. The

sprites will be preloaded into the FPGA SRAM and accessed for each note on the screen. The

coordinates are updated in software and written to memory from which the VGA Driver will

read the coordinates and display the notes at the given locations. The game logic will handle

updates to these sprites and the queueing of future rows of sprites.

When the succeeding notes reach the play line they become the current expected note to

be played. While within a certain range of the play line, the player will successfully hit the note.

If the note is played incorrectly, the notes pass through the playline as if nothing happened. If the

note is played correctly the note is changed from the basic sprite note to a highlighted sprite note

and the user's score is updated.

Resource Budget

Classification # of Elements Pixels Size(bits)

notes 5 80 * 20 192000

line 2 500 * 5 60000

number 10 20*20 96000

hit mark 1 80*20 38400

background music 1 N/A 24000000

Total 24234400

Hardware/Software Interface
The Game Logic is the central authority on the state of the game. Our main hardware

components — those that process input from the Guitar, those that process audio output, and

those that update the VGA’s display — will all communicate with the Game Logic in only one

direction. For example, the processed state of the guitar will always be passed to the Avalon Bus

for the Game Logic to interpret, without any communication required from the Game Logic; the

Game Logic will read the data as it sees fit, as it is the central timing authority. The Game Logic

will also send the necessary data to the VGA and audio output to reflect the current state of the

game and attempt to keep everything synchronized. Specifications for the communication

between these components and the Game Logic follow.

For the Wolfson 8371 Audio CODEC:

Data sent to the VGA controller and data sent to the Game Logic about the state of the guitar

(very likely to change once we understand how their protocol works):

This will be adjusted as we start implementing, but we plan to tell the VGA controller the current

offset of the lowest row of notes on the screen and pass a bit for each note for each row. The

VGA controller will use this data to calculate the coordinates of each needed sprite as each row

will be a constant height. When the bottom row goes off screen, all rows above will be shifted

down and the offset will be adjusted. The format of the data sent from the Guitar to the Game

Logic will be completely dependent on the findings of our reverse-engineering, but the format

illustrated above represents a best-case scenario in terms of ease of interpretation.

