
CSEE 4840 Design Document FASTRADE 1

CSEE 4840 Design Document -
FASTRADE
Spring 2024

Yixuan Li (yl5468, Wenbo Liu (wl2927, Weitao Lu (wl2928, Xiaolei Zhao
(xz3283

Contents

1 Introduction
The rapid fluctuations in the stock market require high-speed data processing to
make informed investment decisions. Traditional computing methods can lag
behind real-time requirements, leading to missed opportunities.

FASTRADE (FPGAAccelerated Strategy & Trading for Enhanced Decisions)
designs and implements a system that uses Field Programmable Gate Arrays
FPGA to calculate investment factors based on daily stock prices and generate

1 Introduction
2 System Block Diagram
3 Algorithms
3.1 Factors:

3.1.1 Price Momentum Factor:
3.1.2 Volume Factor:
3.1.3 Volatility Factor:
3.1.4 Relative Strength Index
3.1.5 Moving Average

3.2 Factor Model
3.2.1 Model Overview:
3.2.2 Factor Embedding:
3.2.3 The weights of Factor Models

4 Resource Budgets
5 The Hardware/Software Interface

CSEE 4840 Design Document FASTRADE 2

investment strategies on these factors. The goal is to accelerate the processing of
financial data to offer real-time investment insights. By leveraging FPGA for
computation and software for data handling and analysis, this project aims to
optimize the efficiency and accuracy of stock market investment decisions.

2 System Block Diagram

The block diagram provides a structured overview of the FASTRADE system,
delineating the distinct roles of hardware and software components and their
interaction.

The hardware side is responsible for reading data and processing it to
distinguish between original features and calculated factors. It also finally
completes the loop by displaying the prediction on a VGA output, providing a
visual representation of the predictive analytics generated by the system.

Communication between the hardware and software components is facilitated
by the Avalon Bus Interface. This interface ensures that the calculated factors

System Block Diagram for FASTRADE

CSEE 4840 Design Document FASTRADE 3

are transmitted securely and efficiently to the software side for further
analysis.

On the software side, the process begins with the loading of data. It is here
that the software retrieves the factors processed by the hardware. The
software is then responsible for generating predictions based on these
factors, demonstrating its analytical role in the system.

User interaction with the system is managed through a separate input block,
where the user provides commands via a keyboard. This allows the user to
choose algorithms.

3 Algorithms

3.1 Factors:

3.1.1 Price Momentum Factor:
First, we will choose a time frame for measuring momentum. Then calculate the
asset over the chosen time frame with the following formula:

For comparison purposes, we will normalize the momentum values. This can be
done by dividing the momentum of each asset by the standard deviation of all
momentum values.

3.1.2 Volume Factor:
First, we will choose a time frame to calculate the volume factor. For the average
volume calculation, we will use the following formula:

For the volume ratio calculation, we use the following formular:

Price Momentum = (Price / Price) −end start 1

V olume Factor =

N
Σ V olume i

V olume Ratio =

V olume average

V olume current

CSEE 4840 Design Document FASTRADE 4

3.1.3 Volatility Factor:
We also need to choose a time frame before calculating. For each day in the
chosen time frame, calculate the return of the security or index. The return can be
calculated as the percentage change in price from the previous day using the
formula:

The Volatility Factor is calculated as the standard deviation of the returns over the
chosen time frame. It measures the price fluctuations of a security or market
index.

3.1.4 Relative Strength Index
RSI is a momentum oscillator that measures the speed and change of price
movements. RSI values range from 0 to 100 and are typically used to identify
overbought or oversold conditions in a traded asset. An asset is usually
considered overbought when the RSI is above 70 and oversold when itʼs below 30.

The formula for calculating the Relative Strength Index RSI is:

where RS Relative Strength) is the ratio of the average gain of the periods that
closed up to the average loss of the periods that closed down. These averages
are typically calculated over a 14-day period, which is the standard period used by
J. Welles Wilder when he introduced the indicator, but the period can be adjusted
to suit different trading strategies and time frames.

The code is like this:

import pandas as pd

Assuming 'df' is a DataFrame containing your stock's price dat

df['delta'] = df['close'].diff() # Step 1: Calculate daily retur

df['gain'] = df['delta'].clip(lower=0) # Step 2: Isolate gains

V olatility Factor =

N−1
Σ (Return −Return)current average

2

RSI = 100 − ()1+RS
100

CSEE 4840 Design Document FASTRADE 5

df['loss'] = -df['delta'].clip(upper=0) # Step 2: Isolate losses

Step 3: Calculate the averages of the gains and losses

avg_gain = df['gain'].rolling(window=14, min_periods=14).mean()

avg_loss = df['loss'].rolling(window=14, min_periods=14).mean()

Step 4: Calculate RS

rs = avg_gain / avg_loss

Step 5: Calculate RSI

df['RSI'] = 100 - (100 / (1 + rs))

We will rewrite the code in system verilog and run it on the FPGA.

3.1.5 Moving Average
First, decide how many periods (days, weeks, minutes, etc.) we want to include in
your moving average. Then sum up the closing prices of the stock for the last N
periods. Finally, divide the total sum of the closing prices by N.

The formula is as following:

3.2 Factor Model

3.2.1 Model Overview:
Based on the calculated factors and the feature of our data, we can use a factor
model to add weight to each factor and generate an output. Our factor model
follows this structure:

Reference:

Rendle, 2010 Steffen Rendle. Factorization machines. In ICDM, 2010.

DeepFM A Factorization-Machine based Neural Network for CTR Prediction

MA =

N
Σ Price i

CSEE 4840 Design Document FASTRADE 6

Factor Models(FM) is a standard multifactor weighting model in factor investment
and recommend systems. Besides a simple linear (order-1 interactions among
features, FM models pairwise (order-2 feature inter- actions as inner product of
respective feature latent vectors.

It follows 3 steps:

Given the space features, it will embed the feature into same format, and then use
a FM layer to give the embedded vectors different weights. Finally it will generate
an output that can be used for stock ranking or sell/buy strategy.

3.2.2 Factor Embedding:
Reference:

Zhang et al., 2016 Weinan Zhang, Tianming Du, and Jun Wang. Deep
learning over multi-field categorical data - A case study on user response
prediction. In ECIR, 2016.

Different Factors have different distribution, semantic meanings, some are
discrete and some are continuous. So it's necessary to embed these factors into

CSEE 4840 Design Document FASTRADE 7

the same dense dimension before the calculation in FM models.

The typical embedding methods are:

0.One-Hot coding:

Good for discrete data, but sparse.

1.Linear Transformation:
 Embedding through a linear transformation. Given a predefined weight matrix W,
where each column represents the embedding vector for a factor. The embedding
vector is calculated by multiplying it with the corresponding weight vector.

2.Autoencoder:
An autoencoder is a type of neural network that can learn a compact
representation of data. Even though it may be challenging to implement in C
language, it can be used to map continuous value factors to a lower-dimensional
space

3.Rule-Based Mapping:
Encoding can be performed by rule-based mapping with binning or segmenting
continuous values based on business logic or statistical characteristics, and then
assign a fixed embedding vector to each bin or segment.

In comparation, Autoencoders typically require a substantial amount of data for
training and may be too complex for simple embedding needs and using C. Rule-
Based Mapping can be easily implemented in C language but needs specific
business logic and need an expert to design the segment threshold for each
factor. One-Hot coding is efficient for discrete factors but too sparse and less
useful for continuous factors.

Therefore, we pick Linear Transformation as our encoding method. Furthermore,
we implement based on the idea of Zhang
et al., 2016 , which is to use the Vector Weights in 4.1 as our embedding weights.
After learning these weights through training process, we can obtain the
embedding for our input factors as:

Let be the value of the factor i, it can be discrete or continuous,value i

CSEE 4840 Design Document FASTRADE 8

Let be the embedded feature

where is trained using previous factors using the method in 3.2.3. Our method
also garuntee the dimension of V and x is the same, so they can be used to
calculate dot product in equation 3.2.3.

3.2.3 The weights of Factor Models

The output of a factorization model is denoted as y_FM . For a given input vector x
∈ R^d , the factorization model can be described by the following equation:
y_FM = ⟨w, x⟩ + ∑(j1=1)^(d) ∑(j2=j1+1)^(d) ⟨V_i, V_j⟩ x_j1 ⋅ x_j2

where:

w ∈ R^d is a weight vector corresponding to the features in x .

V_i ∈ R^k is a matrix where each row corresponds to the k-dimensional vector
representation of the feature i.

⟨w, x⟩ is the dot product of w and x , reflecting the importance of first-order
feature interactions.

The double summation term represents the sum of products of the dot
products of pairs of V vectors and the corresponding feature values in x ,
accounting for the second-order feature interactions.

k is a predefined constant determining the size of the feature vector
representations in V . In our model, we pick k as the number of our factors.

x i

x =i i ∗ V i

V i

CSEE 4840 Design Document FASTRADE 9

The weights of different factors can be calculated as below:

Individual features (w)

The weights for individual features are similar to linear regression.

These weights are learned during the training process, where the model
attempts to minimize the difference between the predicted values and the
actual target values (e.g., using methods like stochastic gradient descent).

Vector Weights V

Each feature in the feature vector xis associated with a vector which is
used to model interactions with other features.

The length k of vector is a hyper-parameter representing the dimensionality
of the interaction space and must be chosen before training. A larger k allows
the model to capture more complex interactions but increases computational
complexity and the risk of overfitting.

In our model, we picked k to be the total number of factors, so it at least have
enough dimension to represent its relationship to all other factors.

Training Process:

Factor weights are learned from data. The model is trained to find these
weights in a way that the predicted values are as close as possible to the true
output values.

The learning can be done through various optimization techniques, with
gradient descent being the most common. Regularization terms are often
added to the loss function to prevent overfitting.

x i V i

V i

V i

CSEE 4840 Design Document FASTRADE 10

In our model, we will use the stock daily return (today's close price - previous
day's close price)/previous day's close price as our target values, and use our
hardware calculated factors as inputs for training out weights using gradient
descent.

Choice 1

For simplify, we will train these weights using our hardware calculated factors
and Python. Then we will set the weights on the hardware and use these
weights for our FM model's calculation and embedding on software.

Choice 2

Weight training process will be written in software ⬆

4 Resource Budgets
Our system requires storage for two distinct data segments:

� Historical Stock Data This consists of a 5-year stock record that occupies
approximately 150,000 bytes, equivalent to 150 KB.

� Predictive Factors These are the computed factors necessary for prediction
purposes, occupying a memory space of 558 bytes, totaling 200 bytes.

Cumulatively, our algorithm necessitates a memory capacity of 150.2 KB. This
volume of data storage is well within our chip memory capacity, ensuring we
remain clear of any potential memory overflow issues.

5 The Hardware/Software Interface
Data Registers:

Input Configuration:

Our data encompasses five dimensions, each requiring 8 bits, totaling 40 bits per
set. To accommodate this, we utilize 64-bit registers. For the calculation of a 30-
day period, we have an array of 30 such registers at our disposal. These registers
are versatile, being capable of holding either the input data or the output factors.

Register 130

Bits 07 Stores open price

CSEE 4840 Design Document FASTRADE 11

Bits 815 Stores highest price

Bits 1623 Stores lowest price

Bits 2431 Stores close price

Bits 3239 Stores volume

Output Configuration:

For the output, each day is characterized by five factors, with each factor
occupying 16 bits. To store these, we employ registers that are 128 bits in size.

Register 3160

Bits 015 Stores factor 1

Bits 1631 Stores factor 2

Bits 3247 Stores factor 3

Bits 4863 Stores factor 4

Bits 6479 Stores factor 5

Control and Status Registers:

Register 61 Algorithm Selection and Result Display:

Bits 02 Represents algorithm chose: 5 algorithms

Bits remain: Represents result to display

Register 62 Calculation Completion Status:

Bits 02 Represents whether hardware has completed calculation

