
Bubble Bobble
Hognzheng Zhu (hz2915) Qingyuan Liu (ql2505)
Lance Chou (lz2837) Ke Liu (kl3554)

1: Introduction
In this project, we plan on creating the game “Bubble-bobbles” on the DE1-SoC FPGA.
“Bubble-bobbles” is a game originally developed in the 1980s by Taito. The game features two
dragons controlled by players who must defeat enemies by trapping them in bubbles shot from
their mouths and popping them. All enemies on one level must be defeated in order to progress
to the next level. All enemies also drop bonus items when defeated. In this case, we will
implement a single-player version of the game with one controllable character (a dragon), and
one enemy type as well as randomly generated levels. Players gain scores by picking up items
dropped by defeated enemies. The player will interact with the game through an iNNEXT SNES
gamepad controller, a 640 x 480 VGA monitor, and a speaker with a 3.5mm audio jack.

2: System Block Diagram



3: Algorithm
The player character has three lives, the player character will lose a life if he hits any enemy.
The game is over once the player character loses his three lives. Enemies cannot shoot bubbles
but move left, and right and jump randomly. The player character can move left, right, jump, and
shoot bubbles to attack enemies under the player’s control.

If the bubble hits an enemy, the enemy will be wrapped in the bubble and will not be able to
move, so if the player character touches the bubble, it will kill the enemy. After killing an enemy,
a fruit will appear at that location as a bonus, and the player character can score points on the
scoreboard by touching that item. The player character will reach the next level once he clears
all the enemies and gets all the bonuses on this level.

The map consists only of small bricks, one by one, which should be surrounded by bricks, and
both the player character and enemies can only stand on the bricks, not go through them.

Each time the player character fires bubbles and dies and moves on to the next level, there are
different sound effects.
The number of enemies becomes more numerous as the level progresses.
Two-player mode could be implemented.
There should be a map generator to automatically generate the map of each level.

Design of map:
There should be a template txt file to represent the basic map, each * is a brick.

The map generator should add some line with * to generate different maps when moving to the
next level.



map generator：



4: Resource Budget

Graphics:

Category Graphics Size(bits) # of images Total size(bits)

Characters 36x36 4 36x36x4x24
=124,416

Enemy#1 36x36 4 36x36x4x24
=124,416

Enemy#2 36x36 4 36x36x4x24
=124,416

Props#1 18x18 5 18x18x5x24
=38,880

Props#2 18x6 2 18x6x2x24
=5,184

Props#3 7x21 4 7x21x4x24
=14,112



Bubble bullets 12x12 1 12x12x1x24
3456

Character Death
Animation

36x36 2 36x36x2x24
=62,208

Enemy#1 Death
Animation

36x36 2 36x36x2x24
=62,208

Enemy#2 Death
Animation

36x36 2 36x36x2x24
=62,208

Brick 9x9 3 9x9x3x24
=5832

Total 627,336bits

Audio:

Category Times(s) Frequency(kHz) # of Bits

Background Music 15s 8 240,000*16
=1,920,000

Damage Enemy 0.3 8 2,400*16
=38,400

Enemy Destroyed 0.3 8 2,400*16
=38,400

Player Takes Damage 0.3 8 2,400*16
=38,400

Player Loses a Life 0.3 8 2,400*16
=38,400

Game Over 3 8 24000*16
=384,000

Victory 3 8 24000*16
=384,000



Total 2,841,600

The DE1-SoC board provides 4,450 Kbits. Our memory size is only 3468 Kbits, so our initial
design should fit well within the provided resources.

5: The Hardware/Software Interface

Controller:
We will be using an iNNEXT SNES gamepad controller to interact with the game. The controller
is connected to the SoC via a USB port.

Figure 5.1: The iNNEXT SNES gamepad controller

The player can interact with the player character with these actions:
Move left: pressing the left arrow button turns the PC leftward, and holding the button moves the
PC left
Move right: pressing the right arrow button turns the PC rightward, holding the button moves the
PC right



Jump: holding the up arrow button causes the PC to jump to a certain height, releasing the
button earlier allows the PC to stop rising and start falling.
Shoot bubbles: pressing the X button shoots a bubble horizontally from the PC. The bubble
goes left if the PC faces left, and goes right if the PC faces right.

Audio:
The Cyclone V SoC comes with a Wolfson WM8731 CODEC chip, which generates ADC and
DACs to interface with analog jacks and the FPGA with a digital interface. This chip has 24-bit
audio capabilities. Given we have 1 audio speaker, we will use one of the DAC channels of the
CODEC to transmit the signal,

Figure 5.2: Wolfson chip block diagram



Figure 5.3: portable speaker with 3.5mm audio jack

VGA Monitor:
The display consists of 3 layers. The background layer provides an empty background as a
setting for the game. The foreground layer includes game objects such as maps/bricks, bubbles,
PC, enemies, and items. The statistic layer is the frontmost layer and displays the player's
health and score.

For feeding information to the VGA monitor, we use a 32-bit width bus, which allows at
maximum, coordinates for a single object to be written. In addition, we also allocated 16 bits for
registered addresses

The rest is the standard VGA controller interface, which includes:
standard controller inputs: clk, reset
Avalon bus interfaces: write, chipselect
VGA monitor interface:

VGA_B [7…0]
VGA_BLANK_n
VGA_CLK
VGA_G [7…0]
VGA_HS
VGA_R [7…0]
VGA_SYNC_n
VGA_VS

The controller contains registers for storing various data needed to be shown on the monitor at
real-time. This includes:

Score system:
The scoring system uses 4 digits to keep track of the player's score.
Each digit takes 4 bits to store, totaling 16 bits. The entire register is one 16-bit register,
with accessing done by slicing.

Player status:
A single 4-bit register is allocated for storing the player's current life counts

Entity position:
Since we are using a VGA monitor with a resolution of 640 x 480, we need 19 bits in
total to store a position for each entity (player character or NPC). 10 bits for its horizontal
position, 9 bits for its vertical position. For ease of use, we allocated 2 16-bit registers for
each coordinate. There is memory allocated for 1 Player Character, 6 Enemies, 30
bubbles, and 6 items. Changing position, calculating hitbox, and resolving collisions will



all be done on the software side. The software will write the coordinates change through
the bus to the monitor.

Sprite enumeration:
Each entity has several sprites to show their direction and form animations. Both PC and
enemies have 6 sprites each, 4 for walking in each direction, 2 for death animations. The
enemies also have a form where it is in a bubble, thus a 4-bit register is assigned to the
PC and each enemy, taking 28 bits.

Address mapping:

Address Length meaning

00-01 0-15 PC position-x, column

0-15 PC position-y, row

02-13 0-15 Enemy pos-x, column

0-15 Enemy pos-y, row

14-73 0-15 Bubble pos-x, column

0-15 Bubble pos-y, row

74-85 0-15 Item pos-x, column

0-15 Item pos-y, row

86 0-15 Player score

87 0-3 Player health

88 0-3 PC sprite

89-94 0-3 Enemies sprite


