
BameGoy Design Document
Nicolas Alarcon (na2946) , Donovan Sproule (das2313), Claire Cizdziel (ctc2156)

Spring 2024

Table of Contents 1

System Block Diagram and Overview 2

Hardware 3

BameGoy CPU 4

BameGoy PPU 5

Video Output 8

Software 9

Technical Data 10

CPU: GB-Z80 10

Video: 11

Pixel Data: 11

Tile Data: 11

Cartridge Header 12

Memory Map (64 KiB resource budget) 13

1

Hardware:

Cartridge Data

- Cartridge headers located $0100 – $014F (detailed below)
- We will be using test ROM cartridges, specifically Tetris [7]

1. Resource Budgets

Memory takes up 64 KiB

ROM Bank 16KiB

Switchable ROM 16KiB

VRAM 8KiB

External RAM 8KiB

WRAM 4KiB

OAM 160 bytes

High RAM 127 bytes

IE 1 bytes

2. The Hardware/Software Interface

Byte usage

$0000 – $7FFF : Cartridge
ROM

Includes game data and internal
work RAM, VRAM

32KiB

IE: 5 bits
Joypad: 4 bits
SB: 8 bits
SC: 8 bits
TAC: 3 bits
IF: 5 bits
LCDC: 8 bits
STAT: 8 bits
SCX: 8 bits
SCY: 8 bits
BGP: 8 bits
OAM: 8 bits

2

System Block Diagram and Overview

The BameGoy system will make use of the Z80 core to write and read from the 16-bit
address space. The Game ROM will be loaded into memory via software. The PPU will send
addresses and data to the Z80 to write and read from RAM to access VRAM and OAM, as well
as the game information for x and y position of sprites and tiles. The PPU will then output 2 bits
per pixel, which will be stored in a framebuffer and sent over VGA to the monitor. The controller
interrupts and data will be read via libusb and sent over the Avalon bus via ioctl to be written to
$FF00. We will be testing the system with test ROMs [7] and tetris, which does not require a
Memory Bank Controller to operate.

We will not be implementing audio support or serial connection.

3

Hardware

BameGoy CPU

The original GameBoy CPU was a Sharp SM83 CPU, but we will be making use of a
modified open-source Z80 that is compatible with the GameBoy instruction set. The sign,
parity/overflow flags have been removed, as have the instructions dependent on them. All DD-,
ED-, and FD- prefixed instructions, as well as the IX- and IY- registers have been removed.
Block instructions are gone, as well as most 16 bit operations, but auto incrementing HL
accesses have been added.

The Game Boy operates about as fast as a 4MHz Z80, and all instructions take multiples
of 4 cycles to complete. For a list of the GB-Z80 ISA refer to [6].

Moved, Removed, and Added Opcodes [4]

4

BameGoy PPU

The gameboy’s screen output data is handled almost exclusively by the Pixel Processing

Unit (PPU). It uses a 32x32 tile system featuring two overlays, the screen and the window. The

window is 32x32 tiles but the screen which is what actually gets displayed at a given time is

20x18.

Tiles

Each tile is 8x8 pixels making the total resolution of the original gameboy 160x144. The

tiles are stored in memory in registers ($8000-$97FF) as a series of rows, each row being 2 bytes

long. The two bytes are merged together and the binary number value of the corresponding index

encodes the color, allowing for the ability to use 4 separate colors.

Operation

At a very high level, the PPU operates using scanlines where it draws a row at a time

starting at the top left corner until it fills up the screen; the current scanline is stored in the

register LY. It takes these pixels from 2 shift registers, the Background and Pixel FIFO. Each

register can only hold data about 8 pixels at a time, and are populated using their respective

fetching routines. The process runs in the background during the 3 modes of operation of the

PPU.

5

Modes

(Mode 2) The first mode the PPU does is the OAM scan. Games hold sprite graphics in tiles, as a

sprite becomes relevant to the scene it is placed in the Object Attribute Memory (OAM)

($FE00-$FE9F). These registers can only hold up to 40 sprites, only 10 of which can be drawn at

a time. Various information about location, the tile number for graphics and other flags are held

here (see OAM Sprite Memory) . During the OAM scan the PPU will traverse a scanline looking

for collisions with a sprite in the OAM. If it finds a sprite it marks it and holds it in another

special register.

(Mode 3) The next mode is for drawing. This is where the PPU runs the fetching steps, pulls

from the shift registers and draws output to the screen.

(Mode 0) This stage is called the h-blank. It pads the end of lines to use up extra clock cycles and

the PPU effectively pauses during blank modes.

(Mode 1) Similar to the stage above but this pads the PPU in the vertical direction for 10

pseudo-scanlines..

Fetching

As stated before, each FIFO can hold up to 8 pixels at a time, storing information about color,

palette, priority and background priority. These are populated as a queue, per scan line. One

FIFO is used for information on the sprites and another on the background. The basic operation

for populating each FIFO is the fetch: The PPU will find the corresponding tile number for the

graphic from the map data or sprite data, grab the tile data and put it into the FIFO. In order to

set which tiles should be displayed in the Background / Window grids, background maps are

used. The VRAM sections $9800-$9BFF and $9C00-$9FFF each contain one of these

background maps. A background map consists of 32x32 bytes representing tile numbers

organized row by row.

This process consists of 4 steps each consisting of 2 cycles: fetching tile number, fetch

first byte of tile data, fetch second byte of tile data, and finally push to FIFO. The background

fifo can only be written to if it is empty. The tile number is fetched from VRAM or OAM,

6

depending on whether it is background or a sprite, the address of which is taken from the current

position on the screen.

Pixel Mixing

Every cycle, the PPU attempts to push to the LCD. If there is a pixel in the background

FIFO, it will do so. If not, it will wait.

If both FIFOs have pixels in them when rendering data, both will be shifted out. The

background pixel will be output to the screen if the sprite color is 0 or if the bg-to-obj priority is

high and the background pixel color is not equal to 0. Otherwise, the sprite pixel is pushed.

The SCX register is defined for background scrolling, the first SCX mod 8 pixels at the

start of a scanline will be discarded, extending PPU mode 3 by SCX mod 8 cycles.

Simplified Timing Diagram for the PPU

7

Video Output

[1]

[2]

Data for 32 x 32 character codes (256 x 256 dots) can be specified from 9800h or 9C00h

as BG display data. Of these, data for 20 x 18 character codes (160 x 144 pixels) are displayed to

the original GameBoy LCD screen. As VGA has a resolution of 640x480 pixels, we will be

sending this data to a FIFO framebuffer on the VGA module 160 pixels long to be displayed at a

3:1 ratio to the original, for an LCD viewport of 480x432 pixels centered on the monitor. For

this, we will be modifying the VGA counters module used in lab 3. For further technical data,

see page 10.

8

Software

To simulate the memory bank swapping we are going to map the BameGoy memory in

the virtual address space of our C program. Here we will load in the game file and post chunks at

a time to ROM simulate the swapping mechanism in the hardware of the original gameboy.

We will also use the software to read in controller input from our USB NES controller.

On an interrupt, the controllers send a singular byte mapping each of its 8 possible inputs to a bit.

When we receive this, we will send an interrupt flag to the BameGoy’s cpu and update the

joypad register ($FF00) with the appropriate values.

These operations will be happening in multiple threads so they can all occur

simultaneously.

9

Technical Data
CPU: GB-Z80

Registers

16-bit Hi Lo Name

AF A Flags Accumulator & Flags

BC B C BC

DE D E DE

H H L HL

SP - - Stack Pointer

PC - - Program Counter

The CPU registers can be accessed as a 16 bit register or as two 8 bit registers.

Flags Register

Bit Name Description

7 z Zero flag

6 n Subtraction flag (BCD)

5 h Half Carry flag (BCD)

4 c Carry flag

10

RAM: 8kiB (DMG), 32 kiB (CGB)

Video:

● 160x144 pixels (20 x 18 tiles) → 480x432 pixels in a window of 640x480 (VGA)

● 2 backgrounds: main and window (for scrolling)

● Max sprites: 40 → max 10 per scanline

● 8×8 pixel tiles

● 456 cycles per line

● 70224 cycles per frame

● VDraw: 144 lines, 65664 cycles

● VBlank: 10 lines, 4560 cycles

● Clock Speed: 4.194304 MHz (2^22 Hz)

● Horizontal Sync: 9198 KHz

● Vertical Sync: 59.73 Hz

Pixel Data:

● 2BPP format - 2 bits per pixel (2 bits to store color data)

● 2 bytes → 8 pixels

● (Each bit of first byte) + (bit in same position on second byte) => calculates color number

[3]

Tile Data:

● Graphics encoded in 2BPP format, stored in VRAM $8000-$97FF

● “Tile Numbers” 16-byte-block in section of VRAM

● Addressing methods: 8000 and 8800

● 8000 Method:

○ $8000: base pointer

○ TILE_NUMBER: unsigned 8-bit integer

11

○ Add $8000 to (TILE_NUMBER * 16)

● 8800 Method:

○ $9000: base pointer

○ SIGNED_TILE_NUMBER: signed 8-bit integer

○ Add $9000 to (TILE_NUMBER * 16)

● We will use 8000 Method to directly map the tile number to memory address.

Cartridge Header
Cartridge headers located at $0100 – $014F:

Entry point $0100 – $0103
Nintendo logo $0104 – $0133
Title $0134 – $0143
Manufacturer code $013F – $0142
CGB $0143

- Enable color mode or monochrome compatibility mode
- $80: game supports CGB enhancements, backwards compatible with monochrome

New licensee code $0144 – $0145
- Only meaningful if $33 (which our game will be)

SGB flag $0146
- Ignored if byte set to value other than $03

Cartridge type $0147
- Byte indicates the kind of hardware present on the cartridge - esp. Its mapper

ROM size $0148
- Typically given by 32 KiB × (1 << <value>)

RAM size $0149
- If cartridge type doesn't include “RAM” in name, set to 0

Destination code $014A
- $00: Japan
- $01: Overseas only

Old licensee code $014B
- Not consider – our new licensee code $33 will override

Mask ROM version num $014C
Header checksum $014D

- If byte at $014D doesn’t match the lower 8 bits of checksum, boot ROM will lock and the
program in the cartridge won’t run

Global checksum $014E – $014F

12

Memory Map (64 KiB resource budget)

IE register, interrupt enabler $FFFF

External bus (2x 16 KiB ROM regions) $0000 – $7FFF

VRAM (8 KiB) $8000 – $9FFF

External bus (8 KiB RAM region) $A000 – $BFFF

WRAM (4 KiB Work RAM) $C000 – $DFFF

ECHO (WRAM secondary mapping, not emulated) $E000 – $FDFF

Object Attribute Memory (OAM), Sprite use $FE00 – $FE9F

High RAM (HRAM) $FF80 – $FFFE

Memory mapped I/O $FF00 – $FF7F

Joypad input $FF00

SB: Serial Byte $FF01

SC: Serial Control $FF02

DIV: Clock Divider $FF04

TIMA: Timer Value $FF05

TMA: Timer Reload $FF06

TAC: Timer Control $FF07

IF: Interrupts asserted $FF0F

Audio channels - unused for this project $FF10 – $FF26

LCDC: LCD control $FF40

STAT: LCD status $FF41

SCY: Background vert. scroll $FF42

SCX: Background horiz. scroll $FF43

LY: LCD Y coordinate $FF44

LYC: LCD Y compare $FF45

DMA: OAM DMA source address $FF46

BGP: Background palette $FF47

OBP0: OBJ palette 0 $FF48

OBP1: OBJ palette 1 $FF49

WY: Window Y coord $FF4A

13

WX: Window X coord $FF4B

Boot ROM control $FF50

Mapping Key:

● 1: Unmapped (hi-Z), always reads 1

● I: Input only (readable by CPU)

● O: Output only (writable by CPU)

● B: Bidirectional (read/write by CPU)

14

Memory Map - Extended Descriptions

IE: Interrupt Enabler $FFFF

0: disable
1: enable

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Transition from
high to low of
Pin #P10-P13

Serial I/O
transfer
complete

Timer overflow LCDC V-Blank

Joypad input $FF00

Keys pulled low (to 0) when press and high (to 1) when unpressed

- If bits 4 and 5 both low, then combination of D-pad and face buttons ANDed

- If neither bit 4 or 5 is selected, then all keys read 1

SB: Serial Byte $FF01

Serial transfer data (R/W)

8 Bits of data to be read/written

SC: Serial Control $FF02

SIO Control (RW)

Bit 7 - Transfer Start Flag

0: Non transfer

15

Bit 4 low 5 low

0 Right A

1 Left B

2 Up Select

3 Down Select

1: Start transfer

Bit 0 - Shift Clock

0: External Clock (500KHz Max.)

1: Internal Clock (8192Hz)

TAC: Timer Control $FF07

Timer control (R/W)

Bit 2 - Timer Stop

0: Stop Timer

1: Start Timer

Bits 1+0 - Input Clock Select

0: 4.096 KHz (~4.194 KHz SGB)

1: 262.144 KHz (~268.4 KHz SGB)

2: 65.536 KHz (~67.11 KHz SGB)

3: 16.384 KHz (~16.78 KHz SGB)

IF: Interrupts asserted $FF0F

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Transition from
high to low of
Pin #P10-P13

Serial I/O
transfer
complete

Timer overflow LCDC V-Blank

16

LCDC: LCD Control Register $FF40

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

LCD

Display

Enable

Window

Tile Map

Select

Window

Display

Enable

Tile Data

Select

BG Tile

Map

Select

Sprite

Size

Sprite

Enable

BG/Wind

ow

Enable

Bit 7 : Enables screens - if set to 0, disables PPU completely

0: Stop completely (no picture on screen)

1: Operation

Bit 6: Uses $9800-$9BFF - if set to 1, sets Window to use background map at $9C00-$9FFF

0: $9800-$9BFF

1: $9C00-$9FFF

Bit 5: Enables display - if set to 0, hides window layer completely

0: off

1: on

Bit 4: Uses 8800 method for tile select - if set to 1, fetches Tile Data using 8000 method

0: $8800-$97FF

1: $8000-$8FFF <- Same area as OBJ

Bit 3: Uses $9800-$9BFF - if set to 1, Background will use background map at $9C00-$9FFF

0: $9800-$9BFF

1: $9C00-$9FFF

Bit 2: 1x1 Tile Sprite size - if set to 1, sprites displayed as 1x2 Tiles (8x16 pixel)

0: 8*8

1: 8*16 (width*height)

Bit 1: Sprites only drawn if set to 1

0: off

1: on

Bit 0: Sprites unaffected - if set to 0, neither Background nor Window tiles are drawn

0: off

1: on

17

STAT: LCD Status Register $FF41

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Unused

(Always

1)

LYC=LY

STAT

Interrupt

Enable

Mode 2

STAT

Interrupt

Enable

Mode 1

STAT

Interrupt

Enable

Mode 0

STAT

Interrupt

Enable

Coincide

nce Flag

PPU

Mode

PPU

Mode

Bit 7 : Unused

Bit 6: If set to 1, enable “LYC=LY condition” to trigger STAT interrupt

Bit 5-3: “Condition enablers” for STAT interrupt - trigger when PPU enters specific mode

Bit PPU Mode

STAT.5 Mode 2 (OAM Scan)

STAT.4 Mode 1 (VBlank)

STAT.3 Mode 0 (HBlank)

Bit 2: Set by PPU if value of LY register = LYC register

0: LYC ≠ LCDC LY

1: LYC = LCDC LY

Bit 1-0: Set by PPU depending on mode

0 : H-Blank

1 : V-Blank

2 : OAM Scan

3 : Drawing, Transferring Data to LCD Driver

SCX: Background horiz. scroll $FF43

8 bit value $00-$FF to scroll BG X screen position

SCY: Background vert. scroll $FF42

8 bit value $00-$FF to scroll BG Y screen position

18

BGP: Background palette $FF47

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Data for Dot Data 11
(~ darkest color)

Data for Dot Data 10 Data for Dot data 01 Data for Dot Data 00
(~ lightest color)

OAM Sprite Memory $FE00 – $FE9F

Byte 0: Y-Position

Actual Y position on screen = Byte 0 - 16

Byte 1 - X-Position:

Actual X position on screen = Byte 1 - 8

Byte 2 - Tile Number:

Unsigned 8 bit integer used for Sprite fetching.

Byte 3 - Sprite Flags:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OBJ-to-BG

Priority

Y-Flip X-Flip Palette

Number

Mode 0

STAT

Interrupt

Enable

Coincide

nce Flag

PPU

Mode

PPU

Mode

Bit 7: OBJ-to-BG Priority

0 = Sprite is always rendered above background

1 = Background colors 1-3 overlay sprite, sprite is still rendered above color 0

Bit 6: Y-Flip
If set to 1 the sprite is flipped vertically, otherwise rendered as normal

Bit 5: X-Flip
If set to 1 the sprite is flipped horizontally, otherwise rendered as normal

Bit 4: Palette Number
If set to 0, the OBP0 register is used as the palette, otherwise OBP1

Bit 3-0: CGB-Only flags

19

Resources:

[1] Video output diagram - screen

https://archive.org/details/GameBoyProgManVer1.1/page/n53/mode/2up (p.57)

[2] Video output diagram - banks

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=

836&PartNo=4#contents

[3] PPU

https://hacktix.github.io/GBEDG/ppu/#an-introduction

[4] Moved, Removed, and Added Opcodes

https://gbdev.io/pandocs/CPU_Comparison_with_Z80.html

[5] Z80 manual

https://www.zilog.com/docs/z80/um0080.pdf

[6] GB- Z80 instruction set

https://rgbds.gbdev.io/docs/v0.7.0/gbz80.7

[7] Test ROMS

https://gbdev.gg8.se/files/roms/blargg-gb-tests/

20

https://archive.org/details/GameBoyProgManVer1.1/page/n53/mode/2up
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=4#contents
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=836&PartNo=4#contents
https://hacktix.github.io/GBEDG/ppu/#an-introduction
https://gbdev.io/pandocs/CPU_Comparison_with_Z80.html
https://www.zilog.com/docs/z80/um0080.pdf
https://rgbds.gbdev.io/docs/v0.7.0/gbz80.7
https://gbdev.gg8.se/files/roms/blargg-gb-tests/

