
Parallel File System Statistics
Matthew Nelson

Preface
File systems can be described as large trees where directory nodes have a non-zero out-degree
and files act as leaf nodes in the tree. Graph traversal algorithms are a popular space for
parallelization, so when I started my project I figured that parallelizing the traversal of the file
system tree and corresponding file information would be a cool thing to research.

In the following sections, I will describe the inspiration behind my project, the sequential
implementation, the parallel implementations, benchmarks, the visualizer utility implementation,
and areas my project could improve.

Inspiration and Background
While researching a topic for my final project, I came across a discussion thread concerning the
traversal of a large network file system. One of the users reported substantial speed up when
parallelizing the traversal of the top-level directories in the file system, so I decided to explore
relevant tooling in this area.

My project is largely inspired by the parallel-disk-usage utility, which is a “blazing fast directory
tree analyzer” written in Rust. The utility traverses a given directory, collects file information, and
outputs an aesthetically pleasing chart showing file sizes, path names, and tree structure.

The Rust implementation accomplishes this by using a pool of worker threads which take care
of the traversal and file statistic collection for files as they are encountered. This somewhat goes
against the Haskell-esk methodologies for parallelization, so I knew there would be challenges
here.

Shown below is an example visual output from the Rust implementation that my project aspired
to emulate:

Sequential Traversal
I first wrote a sequential directory traversal utility in order to have a control to benchmark my
parallelization efforts against. The sequential traversal is rather straightforward: given a starting
root directory, all files including subdirectories are parsed. Stat information for all files is
collected and appended to a results list. Next, all subdirectories are isolated and prepared for
traversal. The recursive traversal function is then called on these subdirectories, and the file
statistic information for all recursive calls is appended to the final list upon return from each
traversal function call. The final list of file information is then propagated back up to the original
traversal call on the root directory. The implementation follows a fairly straightforward pre-order
DFS traversal of the file system tree. It’s my intention in the parallelization stage to support
parallel traversal of each subtree after a certain depth.

traverseFS :: Int -> FilePath -> IO [FileInfo]
traverseFS depthVal path = do
exists <- doesDirectoryExist path
case exists of
True -> do
-- Get the contents of the directory
dirContents <- listDirectory path

-- Convert paths to file information, and get seperate list for sub-directories
let filePaths = map (\fileName -> path ++ "/" ++ fileName) dirContents
fileInfos <- getFileInfos filePaths depthVal
let subDirsInfos = [subDir | subDir <- fileInfos, (isDir (stats subDir))]
let subDirPaths = [(fPath subDir) | subDir <- subDirsInfos]

-- Recursively explore the sub-directories and grab their [FileInfo]s
overallResult <- concatMapM (traverseFS (depthVal + 1)) subDirPaths

return (fileInfos ++ overallResult)
False -> do
-- FileInfo for this file already collected via parent directory, so ignore it
return []

In order to hold the file statistics I foresaw as being useful, I defined my own data constructors
for FileInfo and FileStats. These collectively contain file information such as the file path, the
device the file is stored on, the depth from the root directory the file is located at, the size of the
file, and a flag indicating if it is a directory or not.

data FileInfo = FileInfo { fPath :: FilePath
, stats :: FileStats
, depth :: Int }

data FileStats = FileStats { devID :: DeviceID
, fSize :: FileOffset
, isDir :: Bool }

printFields :: [a -> String] -> a -> String
printFields functs object = intercalate " " $ map ($ object) functs

instance Show FileStats where
show = printFields [show . devID, show . fSize, show . isDir]

instance Show FileInfo where
show = printFields [show . fPath, show . stats, show . depth]

The show type class for FileInfo and FileStats make it very convenient to adjust how each line
for each file should display. These are directly used in my visualizer utility rather than defining
separate visual representations.

The results from the sequential traversal function are then passed to the visualizer utility. The
visualizer utility outputs one line for each encountered file based on its depth in the tree, file
size, and file name. Although I did not spend as much time as I would have liked on beautifying
the output, it serves as a solid foundation to build more functional visualizer functions such as
statistic aggregation for each directory, a prettier tree output, and supporting barcharts for
relative size percentages of the files contained in each subdirectory. For now, I’ve retained
information about the entire path leading to a file as the lexicographical ordering of the absolute
paths results in a proper tree output representing the file system. The removal of all except the
file name from the actual output would likely improve the usefulness of the utility.

Shown below is an example from the tail end of the output after running a sequential traversal
on the root directory of my final project:

Sequential Benchmarks
For all benchmarks across each implementation, I tested the traversal and output speed on a
directory containing a fresh clone of the linux kernel and the root directory for this project’s
source code. The sequential implementation benchmarks serve as a baseline to judge the
parallelized implementations against.

Sequential traversal and visual output

Parallel Implementation
Since the file system is organized in the structure of a tree, it stands to reason that we could
parallelize the traversal of various subtrees since the contents of a directory are independent
from the contents of another directory contained at the same depth and subsequent depths. In
order to avoid excessive parallel traversals, it makes sense to parallelize only up to a certain
depth, and then revert back to a sequential traversal. This approach places an upper bound on
the number of parallel tasks that the implementation can generate in an attempt to better utilize
the available resources of the machine

traverseFSPar :: Int -> FilePath -> IO [FileInfo]
traverseFSPar depthVal path = do
exists <- doesDirectoryExist path
case exists of
True -> do
-- Get the contents of the directory
dirContents <- listDirectory path

-- Convert paths to file information, and get seperate list for
sub-directories

let filePaths = map (\fileName -> path ++ "/" ++ fileName) dirContents
fileInfos <- getFileInfos filePaths depthVal
let subDirsInfos = [subDir | subDir <- fileInfos, (isDir (stats subDir))]
let subDirPaths = [(fPath subDir) | subDir <- subDirsInfos]

-- Parallel traverse if above depth of 3 (0,1,2), sequential otherwise
case (depthVal < 3) of
True -> do
let overallResultLists = parMap rpar (traverseFSPar (depthVal + 1))

subDirPaths
overallResult <- consolIOLists overallResultLists
return (fileInfos ++ overallResult)

False -> do
overallResult <- concatMapM (traverseFSPar (depthVal + 1)) subDirPaths
return (fileInfos ++ overallResult)

False -> do
-- FileInfo for this file already collected via parent directory, so

ignore it
return []

The main changes in the parallel traversal compared to the sequential traversal are contained in
the “case (depthVal < 3) of” block and beyond. For the first 3 levels of directories after the root
directory, the traversals of the subtrees are parallelized. Beyond this depth, the original
sequential traversal methodology is used.

The intended power of this implementation comes from the parMap and rpar calls used when
generating the overallResultLists which contain the FileInfo for all files located in the
subdirectories. The rpar function creates a spark for the given argument, which is the
traverseFSPar call, and parMap applies this to every single subdirectory in the list. The intention
here is to traverse each subdirectory and its corresponding subtree in parallel until the depth
limit is reached before reverting to the sequential traversal.

Parallel Benchmarks
After finally figuring out how to parallelize my tree traversal implementation, or so I thought, I
was excited to run the benchmark and review the results.

Shown below are times and threadscope outputs for running the parallel traversal and visualizer
utility on the same directory containing a fresh clone of the linux kernel and my project’s root
directory.

“Parallel” Version 1, traversal and visualizer output

Unfortunately, my first attempt at a parallel traversal managed to have absolute no
parallelization taking place. The execution time was nearly the same as the sequential
implementation, and only one core was doing any productive work.

Hypothesis on Parallel V1 Failure
Assuming we have a list of IO Actions that we want to complete, it makes sense that we would
probably want to execute them sequentially as this preserves any possible read/write ordering
to files. However, in this particular usecase, a stat() call to a file in one subdirectory has no effect
on a stat() call to a file in another subdirectory yet the default behavior of IO Actions still forces
them to execute sequentially. I believe this is the primary cause behind the observed results
from my first parallel implementation.

Another possible cause with looking into is how the FileInfo data for each file is propagated back
up through the recursive calls. Constantly appending to a list could be introducing a barrier to
parallelism as we are constantly waiting for list construction to finish.

In either case, the first attempt at a parallel implementation likely does not properly manage the
parallel and lazy forces of Haskell.

Important Note on Caching
The first traversal over a root directory is always going to be the one that takens the longest. In
all of my benchmarks, I have made sure to run the sequential traversal prior to the
benchmarked traversal whether it be another sequential traversal, a parallel V1 traversal, or a
parallel V2 traversal. In my presentation, I highlight the substantial performance differences that
can be observed between the first and subsequent runs of any traversal methodology. All of the
results here account for the effects of caching in the operating system’s file system
implementation.

Parallel Implementation: Version 2
After my failure with the first parallelization attempt, I decided to restructure the problem into two
areas: the parallelization of the file tree traversal and the parallelization of the collection of file
statistics via stat() calls to the operating system.

In both cases, the sequential execution nature of IO actions possesses a challenge. I
discovered multiple possible solutions for this issue, and I was able to achieve true
parallelization in my implementation.

The Rust implementation that inspired this project uses a pool of worker threads to traverse
subdirectories and collect file system information. I decided that this would be the best way
forward to get around the issue of IO Actions executing sequentially.

For the parallelization of the stat() calls, the modified the file statistic collection function to be the
following implementation:
getFileInfosPar :: [FilePath] -> Int -> IO [FileInfo]
getFileInfosPar filePaths fileDepth = forConcurrently filePaths (\indivFilePath -> do
indivFileStatus <- getFileStatus indivFilePath
let toFileInfo :: FilePath -> FileStatus -> FileInfo

toFileInfo filePath fileStatus = FileInfo { fPath = filePath
, stats = FileStats { devID = (deviceID

fileStatus)
, fSize = (fileSize

fileStatus)
, isDir =

(isDirectory fileStatus)}
, depth = fileDepth}

return (toFileInfo indivFilePath indivFileStatus))

The forConcurrently function is provided in the Control.Concurrent.Async package. This function
executes all of the given IO actions in parallel, and returns a convenient list of the results. This
means for a given list of files in a directory, all of the stat() calls are able to run in parallel.

The modified getFileInfosPar function is integrated in a largely similar traversal implementation
from before.

The Async package provides a layer of abstraction over the concurrency mechanisms provides
in Haskell via the Control.Concurrent package. Async spawns threads which execute IO actions
in a manner that protects against hidden exceptions and leaked threads. In using the Async
package, the parallelization achieved in parallel version 2 of my implementation is closely
related to the mechanism used by the Rust utility.

Parallel Version 2 Benchmarks
The work of outputting the visual representation of the file system statistics is unfortunately
difficult to parallelize. To my knowledge, I have yet to see an appropriate mechanism by which
any program outputs to stdout concurrently, so I’ve accepted this is a challenge I did not tackle
in my implementation. With that said, the following benchmarks show both the threadscope
output from a traversal with a visualizer output and an isolated traversal.

Parallel Version 2, traversal and visualizer output

The distinct sections of work are evident in the above threadscope output. Although the file
information collection is parallelized, the massive output to stdout for each file in the output tree
still must run sequentially.

Parallel Version 2, traversal and no visualization

Isolating only the file information collection and traversal, we can see that their is substantial
parallelism among the stat() calls.

However, despite being blessed with parallelism on the second goaround, the performance of
the parallel implementation has actually decreased substantially compared to sequential
implementation. The cost of parallelism on 4 cores is approximately 1.6x as costly as running
the sequential implementation.

Implementation 1 Core 4 Cores

Sequential

Parallel V1

Parallel V2

Inspiration Environment vs Test Environment
It’s important to note that the environment these types of utility programs run on will play a role
in how useful they are or not. In the instance of the forum discussion I referenced at the
beginning of this report, being able to parallelize traversals across multiple disks on a large file
server likely poses a much greater opportunity than being limited to a test environment involving
only one disk. I’d imagine that executing the utility in parallel across multiple directories
contained on separate disks would provide a much greater performance benefit.

Future Work and Considerations
Given then poor performance gains from parallelizing the stat() call interactions with the OS, I
would be surprised if a parallelized directory traversal on a device containing only a single
storage device would result in a speed gain compared to the sequential implementation
counterpart. Parallization of the traversal would be accomplished to executing the IO Actions
corresponding to each traverseFSParV2 call within a thread pool similar to the modified
getFileInfosPar implementation.

Visualizer Implementation
The visualizer utility and traversal implementations can largely be treated as separate tasks.
The visualization utility accepts input in the form of IO [FileInfo], and outputs a visual
representation of the file tree. For each file, the file path and it’s size are output. The data
structures are setup though so that the devices the files are stored on could also be accounted
for in the output.

displayLines :: [FileInfo] -> String -> [String]
displayLines infoList prefix = strList
where trimmedList = [x | x <- infoList]

sortedList = sortBy (\x y -> compare (show (fPath x)) (show (fPath y)))
trimmedList

strList = [(getElegantOutput x prefix) | x <- sortedList]

getElegantOutput :: FileInfo -> String -> String
getElegantOutput info prefix = (getPrefix info (depth info) (depth info)) ++
(rmPrefix (prefix) (fPath info)) ++ " " ++ (show $ fSize (stats info))

getPrefix :: FileInfo -> Int -> Int -> String
getPrefix info currDepth initDepth
| currDepth == 0 = " "
| currDepth == initDepth = (getPrefix info (currDepth - 1) initDepth) ++ "_"
| otherwise = (getPrefix info (currDepth - 1) initDepth) ++ " "

--
https://stackoverflow.com/questions/18554083/haskell-program-to-remove-part-of-
list-and-print-the-rest
rmPrefix :: Eq a => [a] -> [a] -> [a]
rmPrefix [] ys = ys
rmPrefix _ [] = []
rmPrefix xs ys =
if xs == take n ys
then drop n ys
else ys
where n = length xs

Since the lexicographical ordering of the absolute file paths results in the correct line ordering
for outputting the file tree, the visualization utility uses the absolute path to obtain a proper
ordering for each file-line output.

Conclusion
Although I successfully parallelized the IO Actions for collecting file stats, I was not able to
achieve a truly parallel traversal of the directories itself. I believe that this utility would be best
applied on a larger file system where independent devices would provide more fertile group for
performance gains due to parallelism

Appendix
Source Code:
https://github.com/nelsonm2991/parallel-fs-stats

Performance Comparison: Caching
Below are outputs from a first run and second run of the sequential traversal to show the effect
caching has on the performance of subsequent traversals.

First run

Second run

