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1 Introduction

Nonograms are logic puzzles consisting of an m× n grid and a set of m+ n
constraints, each consisting of a sequence of positive numbers denoting the
number of consecutive squares that must be colored in either a row or a
column. The objective of the puzzle is to color the whole grid while satisfying
all constraints. Figure 1 features an example portraying an unsolved and
solved version of a puzzle.

Figure 1: Unsolved and solved Nonogram
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2 Approach

There are many possibles approaches to solving a nonogram, given the NP-
complete nature of the problem. Our approach consists of an algorithm
combining deduction and search, which begins by trying to logically fill in as
many initial values as possible in the grid. This is done by using both row and
column data and finding the commonality between both sets. This process is
repeated until no more deductions can be made. Then, if the puzzle cannot
be solved by deduction alone, the algorithm iterates on this partially solved
grid by making guesses on the remaining unknown cells in each row and then
checking against the column data. This ends once a solution is reached or
the data set is deemed unsolvable. Given the aforementioned, the algorithm
is best described as a backtracking depth first search prefaced by an iterative
deductive step.

3 Implementation

3.1 Sequential Solution

3.1.1 Brute Force Solution

Our first idea was to use the basic Backtracking Solver featured in the Haskell
Wiki[1]. This approach works by creating a tree of all possible row guesses and
then cross referencing against the column data. Although slow, the algorithm
was simple and given the tree like nature, it seemed very easy to reach the
upper limits of Amdahl’s Law by processing branches in parallel. However,
the algorithm was struggling to solve even 10 × 10 puzzles in a reasonable
amount of time, even with some basic optimizations we implemented.

3.1.2 Deductive Solution

Given the extremely poor performance and large memory requirements of the
Backtracking Solver, we opted to use a deductive approach. This solution is
heavily based on the Deducing Solver, also provided in the Haskell Wiki[1],
with modifications mostly concerning the types and some minor performance
optimizations. Most noticeably, we chose to introduce a Cell type instead
of the default Maybe Bool. However, we do still preserve the usage of the
Maybe monad, but not on a per-cell basis.
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3.2 Data Types

3.2.1 Cell

The Cell type is used to represent each square of the nonogram at a given
point in time. There are three possible values for the given type:

• Filled – a filled cell

• Empty – an empty cell

• Unknown – a cell for which a value has not yet been deduced or found

Our implementation relies on the Cell type to derive both Eq and Show.

3.2.2 Row

The Row type is used to represent a collection of Cells by relying on the
native List type.

3.2.3 Nonogram

The Nonogram type is used to represent a collection of Rows. Since the
Nonogram type is used only to represent the state of the grid and not its
constraints, it just needs to concern itself with either rows or columns, and
the choice was made arbitrarily. As was the case for the Row type, the
Nonogram type relies on the native List type.

3.3 Parallelization

3.3.1 Initial Exploration

To begin, we manually examined the code to identify sections that could
be most easily parallelized. Namely, replacing the multiple map calls across
transform, nonogram, solve, common with calls to parMap in combination
with different strategies. The results in all cases were unsatisfactory causing
most of the sparks to be fizzled in the transform, nonogram, and solve cases
and most of them to be garbage collected in the case of common, but most
importantly not achieving speed-ups of above 10-15% when spreading the
computation across two cores and measuring with respect to the sequential
performance.
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3.3.2 Profiling

Considering that our primary concern at this stage was the speed-up of the
parallelization, rather than the specifics of the parallelization itself, we opted
to take advantage of the profiling options in stack to identify the area of the
code consuming the bulk of the time. The high level profile overview of the
sequential solution was as follows:

COST CENTRE MODULE %time %alloc

common Lib 61.1 58.3

rowsMatchingAux Lib 21.1 26.8

common.check Lib 8.8 0.0

rowsMatchingAux.(...) Lib 3.9 7.6

rowsMatching Lib 2.8 5.0

rowsMatchingAux.l Lib 0.6 2.2

Furthermore, a detailed break-down of the profiling report concerning the
common function shows that the bulk of the time spent is in function code
itself rather than in any of the subcalls. Therefore, it was immediately clear
where our efforts would focus. The common function, used to find the com-
monality between all possible ways of placing blocks of a given length in a
row consumed the bulk of the time, so we centered our parallelization efforts
towards that function. Given that the initial exploration already tried up-
dating the call to map with parMap fruitlessly, our second attempt surrounded
itself with parallelizing the zipWith call with our own implementation of its
parallel counterpart parZipWith:

parZipWith : : ( a −> b −> c ) −> [ a ] −> [ b ] −> [ c ]
parZipWith f xs ys = parMap rseq (uncurry f ) ( zip xs ys )

While the results in terms of speed-up were promising than the prior experi-
ments, the preliminary sparks breakdown left a lot of room for improvement:

SPARKS: 19569570

(2795085 converted, 11645905 overflowed, 0 dud, 31172 GC’d, 34752 fizzled)

Our last option, was to introduce strategy to the computation of:

foldr1 (zipWith check ) (map ( f i l t e r isKnownCell ) r s )

which resulted in the most positive results in terms of speed up and sparks
report.
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3.3.3 Strategy Exploration

The rseq combinator was the obvious choice to balance the overhead of
parallel evaluation with the performance benefits, but in terms of evaluation
strategies, we explored parList, parListChunk, and parBuffer. We tested
each of this on our 30× 45 puzzle to allow for a fairly significant amount of
spark creation.

Strategy Converted Overflowed Dud GC’d Fizzled Total

parList 10866 0 0 12276 1158 24300
parList(%) 44.7% 0% 0% 50.5% 4.8% 100%

parListChunk 595 0 0 625 400 1620
parListChunk(%) 36.7% 0% 0% 38.6% 24.7% 100%

parBuffer 9900 0 11450 2531 424 24300
parBuffer(%) 40.7% 0% 47.1 % 10.4% 1.7% 100%

This results were obtained using 20 as the parameter for parListChunk and
50 as the parameter for parBuffer. Since the usage of both those functions
varies a lot with the size of the buffer and the size of the chunk, ascertaining
an optimal parameter for each would require additional complexity as it
would have to be calculated in regard to the length of the rows in the puzzle
and passed to the common function. Given that we didn’t see any performance
improvements by either approach that would out weight the performance of
parList in addition to the added complexity, we made the final choice to
use the parList evaluation strategy in our implementation.

3.4 Other Implementation Details

Our implementation takes advantage of the Haskell Tool Stack and pro-
vides the following targets: build, exec, bench, test. The first two are
self-explained and detailed in the README, bench is further explained in
Section 3.5.

3.4.1 IO

In order for the solver to work as expected, the input must be given as a
filename containing a single list with two elements representing the row and
column data, in that order. Each of those lists is comprised of multiple

5



sub-lists, with each element denoting that row or column’s cell data. For
example, the input corresponding to the Puzzle in Figure 1(a) would be:

[[[2,1],[1,3],[1,2],[3],[4],[1]],[[1],[5],[2],[5],[2,1],[2]]]

To represent the final state, Filled cells are displayed as #, and Empty cells
are displayed as ., so the solution portrayed in Figure 1(b) would be:

##...#

.#.###

.#.##.

.####.

...#..

3.4.2 Testing

Prior to executing a full evaluation of our code, we decided to implement var-
ious test leveraging the HUnit library to ensure the functional correctness of
the implementation. Since the test only concern themselves with correctness,
all test results are independent of the number of threads they are executed
with. All functions present in the Lib.hs have at least a corresponding unit
test.

3.4.3 Error Handling

Additionally, our implementation introduces various error checking mecha-
nisms reported via the custom NonogramException type to avoid initiating
the computation on cases of invalid inputs or erroneous constraints that
would deem the puzzle unsolvable prior to the search. The reported excep-
tions are as follows:

Exception Message
InvalidConstraint Nonogram constraints are invalid
InvalidNonogram Nonogram is invalid

InvalidList Nonogram must have two lists of constraints
ConstraintIsEmpty Nonogram constraint list is empty

ConstraintHasNegativeValue Nonogram constraints contain negative values
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4 Evaluation

4.1 Settings

Our experiments and performance evaluation was performed on a 2021 16-
inch Macbook Pro with a 10 core M1 Pro CPU and 32GB RAM.

4.2 Initial Testing

4.3 Sequential Results

In order to get a good baseline for our tests, we manually run a series of
tests on a variety of different sized puzzles, all ranging around medium to
hard difficulty. Our library includes larger puzzles, but for the sake of total
benchmark time, we neglected to run any of the larger ones. This program
runs each test several times, and ends by providing data about the mean
execution time, standard deviation, etc. We use this data, as opposed, to
rough approximations with manual runs, to inform our baseline expectations.
Below is the data from the sequential evaluation of the 30× 40, 30× 45, and
40× 45 puzzles, respectively.

4.3.1 Parallel Results

To evaluate the performance of our parallelization, we repeated the above
process with 2, 3, and 4, and 6 threads in order to gather enough data to
form a trend line. As shown below, we achieve maximum speedup when
running on 3 threads, with lower speedups for higher thread counts. This is
likely due to the sheer amount of overhead required to create and execute
the sparks. The amount of code being run by each spark becomes no longer
worth the setup time required and the program ends up spending more time
garbage collecting or wasting CPU time (fizzling). It’s very possible that
we could further extend the increases in speedup to higher thread counts
with careful management of spark creation via parBuffer or parListChunk
(as mentioned above), but this would require a significant amount of testing
as not only do these depend on thread count but also on puzzle size and
complexity. The additional code complexity would not be worth the likely
minimal performance gains, so we opted not to entertain this approach.

7



Figure 2: Runtime and speedup vs threads
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4.4 Additional Analysis

Despite the 3 thread case being the fastest, the fastest relative speed-up was
obtained when comparing the sequential solution to the 2 threaded case. To
verify this result we decided to take advantage of stack bench to automa-
tize multiple runs of the 10× 10, 20× 20, 30× 40, and 30× 45 puzzles. The
differences in performance in the 10 × 10 and the 20 × 20 puzzles were not
statistically significant. The results for the 30×40, and 30×45 are as follows:

Figure 3: 30x40 and 30x45 sequential benchmarks

Figure 4: 30x40 and 30x45 parallel (-N2) benchmarks
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From this results, it is clear that the complexity and execution type of the
puzzle is not uniquely dependent on its size, as the 30 × 40 puzzle took
considerably more time to be solved than the 30×45 puzzle in both settings.
Furthermore, we see that speed-up obtained during the bench marking is
lower than that obtained during manual testing for the 30 × 40, 1.34 as
opposed to the previous 1.6. While remaining about the same at 1.44 for
the 30 × 45. This gave us a very good indication of what to be expect in
the Threadscope visualization as the more plausible explanation from this
behavior is that since the 30× 40 puzzle is more complex than the 30× 45,
the memory usage is also higher, slowing the system more when running a
higher number of iterations of the solver on a given puzzle.

4.5 Threadscope

As it was expected, the high memory consumption of the program can be seen
in the large amount of garbage collection that is executed across threads, this
results in less total activity than desired since the garbage collection is inter-
leaved between meaningful execution due to the converging and backtracking
nature of the algorithm, for this can be seen in the sequential implementation
as well. Despite that, the Threadscope results show various positive outcomes
as the computation across the different threads mirrors a very even split and
the number of converted sparks dominates across all categories.

4.6 Conclusion

While our speed-up is short of linear in terms of growth, we believe that
the bottleneck is the nature of the problem rather than our parallelization
strategy. An important lesson to note, which was already presented during
the semester, is that parallelization in Haskell requires fine tuning of the
evaluation strategies as well as the combinators used in each strategy since
the added overhead of sparking parallel computations is quick to outweigh the
benefits. The main issue we encountered is that said fine-tuning in the case
of Nonograms is very dependent on the input size and the complexity of the
problem is highly variable across input constraints, making no parallelization
strategy ideal in the general case.
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Figure 5: Threadscope visualization for 30x40 (N2 above, N1 below)
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5 Code Listings

5.1 app/Main.hs

1 module Main (main ) where
2
3 import Lib
4 import System . Environment (getArgs , getProgName)
5
6 main : : IO ( )
7 main = do
8 args <− getArgs
9 case args of
10 [ f i l ename ] −> do
11 contents <− readFile f i l ename
12 l et puzz l e = read contents : : [ [ [ Int ] ] ]
13 l et = verifyNonogram puzz l e
14 l et ( cs , r s ) = (head puzzle , last puzz l e )
15 print puzz l e
16 l et s o l = nonogram r s cs
17 putStrLn s o l
18 −> do
19 pn <− getProgName
20 putStrLn $ ”Usage : ” ++ pn ++ ” f i l ename ”

12



5.2 src/Lib.hs

1 module Lib where
2
3 import Control . Exception ( Exception , throw )
4 import Control .Monad (zipWithM)
5 import Control . P a r a l l e l . S t r a t e g i e s ( parLis t , rseq , withStrategy )
6 import Data . List (group , transpose )
7 import Data .Maybe (maybeToList)
8
9 data NonogramException = Inva l i dCons t r a in t
10 | InvalidNonogram
11 | I n v a l i dL i s t
12 | ConstraintIsEmpty
13 | ConstraintHasNegativeValue
14
15 instance Show NonogramException where
16 show Inva l i dCons t r a in t = ”Nonogram con s t r a i n t s are i n v a l i d ”
17 show InvalidNonogram = ”Nonogram i s i n v a l i d ”
18 show I n v a l i dL i s t = ”Nonogram must have 2 c on s t r a i n t l i s t s ”
19 show ConstraintIsEmpty = ”Nonogram con s t r a i n t l i s t i s empty”
20 show ConstraintHasNegativeValue = ”Nonogram con s t r a i n t s conta in negat ive va lue s ”
21
22 instance Exception NonogramException
23
24 instance Eq NonogramException where
25 x == y = show x == show y
26
27 data Ce l l = Empty | F i l l e d | Unknown deriving (Eq)
28
29 instance Show Ce l l where
30 show Empty = ” . ”
31 show F i l l e d = ”#”
32 show Unknown = ”?”
33
34 type Row = [ Ce l l ]
35
36 type Nonogram = [Row]
37
38 v e r i f yCon s t r a i n t s : : [ [ Int ] ] −> Int −> Bool
39 v e r i f yCon s t r a i n t s ( x : xs ) l = ve r i f yCon s t r a i n t x l && ve r i f yCon s t r a i n t s xs l
40 where
41 v e r i f yCon s t r a i n t : : [ Int ] −> Int −> Bool
42 v e r i f yCon s t r a i n t x ’ l ’
43 | null x ’ = throw ConstraintIsEmpty
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44 | any (< 0) x ’ = throw ConstraintHasNegativeValue
45 | (sum x ’ + length x ’ − 1) > l ’ = throw Inva l i dCons t r a in t
46 | otherwise = True
47 v e r i f yCon s t r a i n t s [ ] = True
48
49 verifyNonogram : : [ [ [ Int ] ] ] −> Bool
50 verifyNonogram puzz l e
51 | length puzz l e /= 2 = throw Inv a l i dL i s t
52 | null (head puzz l e ) | | null ( last puzz l e ) = throw InvalidNonogram
53 | otherwise = verifyNonogram ’ (head puzz l e ) ( last puzz l e )
54 where
55 verifyNonogram ’ : : [ [ Int ] ] −> [ [ Int ] ] −> Bool
56 verifyNonogram ’ rows c o l s
57 | v e r i f yCon s t r a i n t s rows ( length rows )
58 && ve r i f yCon s t r a i n t s c o l s ( length c o l s )
59 | otherwise = throw InvalidNonogram
60
61 nonogram : : [ [ Int ] ] −> [ [ Int ] ] −> String
62 nonogram rows columns = case s o l v e rows columns of
63 [ ] −> ”Unsolvable \n”
64 ( g r id : ) −>
65 unlines
66 . map (concatMap show)
67 . transpose
68 $ g r id
69
70 trans form : : [ Ce l l ] −> [ Int ]
71 trans form =
72 map length
73 . f i l t e r
74 ( \y −> case y of
75 [ ] −> False
76 (x : ) −> x == F i l l e d
77 )
78 . group
79
80 so l v e : : [ [ Int ] ] −> [ [ Int ] ] −> [ Nonogram ]
81 s o l v e r s cs = do
82 g r id <− maybeToList ( deduce r s cs )
83 gr id ’ <− zipWithM ( rowsMatching nc ) r s g r id
84 i f map trans form ( transpose gr id ’ ) == cs
85 then return gr id ’
86 else [ ]
87 where
88 nc = length cs
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89
90 deduce : : [ [ Int ] ] −> [ [ Int ] ] −> Maybe Nonogram
91 deduce r s cs = converge s tep i n i t i a l
92 where
93 nr = length r s
94 nc = length cs
95 i n i t i a l = replicate nr ( replicate nc Unknown)
96 step = ( improve nc r s . transpose ) <.> ( improve nr cs . transpose )
97 improve n = zipWithM (common n)
98 ( g <.> f ) x = f x >>= g
99
100 converge : : (Nonogram −> Maybe Nonogram) −> Nonogram −> Maybe Nonogram
101 converge f s = do
102 s ’ <− f s
103 i f s == s ’ | | not (any (elem Unknown) s ’ )
104 then return s ’
105 else converge f s ’
106
107 isKnownCell : : Ce l l −> Bool
108 isKnownCell Unknown = False
109 isKnownCell = True
110
111 common : : Int −> [ Int ] −> Row −> Maybe Row
112 common n ks p a r t i a l = case rowsMatching n ks p a r t i a l of
113 [ ] −> Nothing
114 r s −> Just $ withStrategy ( pa rL i s t r s eq )
115 ( foldr1 (zipWith check ) (map ( f i l t e r isKnownCell ) r s ) )
116 where
117 check : : Ce l l −> Ce l l −> Ce l l
118 check x y
119 | x == y = x
120 | otherwise = Unknown
121
122 rowsMatching : : Int −> [ Int ] −> Row −> [Row]
123 rowsMatching [ ] [ ] = [ [ ] ]
124 rowsMatching [ ] = [ ]
125 rowsMatching n ks (Unknown : p a r t i a l ) =
126 rowsMatchingAux n ks F i l l e d p a r t i a l
127 ++ rowsMatchingAux n ks Empty p a r t i a l
128 rowsMatching n ks ( s : p a r t i a l ) =
129 rowsMatchingAux n ks s p a r t i a l
130
131 rowsMatchingAux : : Int −> [ Int ] −> Ce l l −> Row −> [Row]
132 rowsMatchingAux [ ] = [ [ ] ]
133 rowsMatchingAux Unknown = [ [ ] ]
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134 rowsMatchingAux n ks Empty p a r t i a l =
135 [ Empty : row | row <− rowsMatching (n − 1) ks p a r t i a l ]
136 rowsMatchingAux n [ k ] F i l l e d p a r t i a l =
137 [ replicate k F i l l e d ++ replicate (n − k ) Empty
138 | n >= k && notElem Empty f r on t && notElem F i l l e d back
139 ]
140 where
141 ( f ront , back ) = splitAt ( k − 1) p a r t i a l
142 rowsMatchingAux n (k : ks ) F i l l e d p a r t i a l =
143 [ replicate k F i l l e d ++ Empty : row
144 | n > k + 1 && notElem Empty f r on t && blank /= F i l l ed ,
145 row <− rowsMatching (n − k − 1) ks pa r t i a l ’
146 ]
147 where
148 l = splitAt ( k − 1) p a r t i a l
149 f r on t = f s t l
150 blank = head (snd l )
151 pa r t i a l ’ = t a i l (snd l )

16



5.3 benchmark/Main.hs

1 module Main where
2
3 import Cr i t e r i on
4 import Cr i t e r i on .Main ( defaultMain )
5 import Lib
6
7 main : : IO ( )
8 main = do
9 nonogram10x10 <− readFile ” puzz l e s /10x10 . txt ”
10 nonogram20x20 <− readFile ” puzz l e s /20x20 . txt ”
11 nonogram30x40 <− readFile ” puzz l e s /30x40 . txt ”
12 nonogram30x45 <− readFile ” puzz l e s /30x45 . txt ”
13 l et puzz le10x10 = read nonogram10x10 : : [ [ [ Int ] ] ]
14 l et puzz le20x20 = read nonogram20x20 : : [ [ [ Int ] ] ]
15 l et puzz le30x40 = read nonogram30x40 : : [ [ [ Int ] ] ]
16 l et puzz le30x45 = read nonogram30x45 : : [ [ [ Int ] ] ]
17 l et ( rows10x10 , co l s10x10 ) = (head puzzle10x10 , last puzzle10x10 )
18 l et ( rows20x20 , co l s20x20 ) = (head puzzle20x20 , last puzzle20x20 )
19 l et ( rows30x40 , co l s30x40 ) = (head puzzle30x40 , last puzzle30x40 )
20 l et ( rows30x45 , co l s30x45 ) = (head puzzle30x45 , last puzzle30x45 )
21 defaultMain
22 [ bgroup
23 ”nonogram t e s t s ”
24 [ bench ”nonogram10x10 Test ” $ whnf ( nonogram rows10x10 ) co ls10x10 ,
25 bench ”nonogram20x20 Test ” $ whnf ( nonogram rows20x20 ) co ls20x20 ,
26 bench ”nonogram30x40 Test ” $ whnf ( nonogram rows30x40 ) co ls30x40 ,
27 bench ”nonogram30x45 Test ” $ whnf ( nonogram rows30x45 ) co ls30x45 ,
28 ]
29 ]
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5.4 test/Spec.hs

1 module Main where
2
3 import Control . Exception
4 import Control .Monad
5 import Lib
6 import Test . HUnit . Base
7 import Test . HUnit . Text ( runTestTT )
8
9 as s e r tExcept i on : : ( Exception e , Eq e ) => e −> IO a −> IO ( )
10 as s e r tExcept i on ex ac t i on =
11 handleJust isWanted ( const $ return ( ) ) $ do
12 <− ac t i on
13 a s s e r tF a i l u r e $ ”Expected except ion : ” ++ show ex
14 where
15 isWanted = guard . (== ex )
16
17 t e s t s : : Test
18 t e s t s =
19 Tes tL i s t
20 [ TestLabel ” testVeri fyNonogram” testVerifyNonogram ,
21 TestLabel ” testVerifyNonogram ’ ” testVerifyNonogram ’ ,
22 TestLabel ” t e s tVe r i f yCon s t r a i n t s ” t e s tVe r i f yCons t r a i n t s ,
23 TestLabel ” t e s tVe r i f yCons t r a i n t s ’ ” t e s tVe r i f yCons t r a i n t s ’ ,
24 TestLabel ” t e s tVe r i f yCons t r a i n t s ’ ’ ” t e s tVe r i f yCons t r a i n t s ’ ’ ,
25 TestLabel ” t e s tVe r i f yCons t r a i n t s ’ ’ ’ ” t e s tVe r i f yCons t r a i n t s ’ ’ ’ ,
26 TestLabel ” testTransform” testTransform ,
27 TestLabel ” testTransform ’ ” testTransform ’ ,
28 TestLabel ” t e s t S o l v e ” t e s tSo lve ,
29 TestLabel ” t e s tSo lve ’ ” t e s tSo lv e ’ ,
30 TestLabel ” test i sKnownCel l ” test i sKnownCel l ,
31 TestLabel ” test isKnownCel l ’ ” test i sKnownCel l ’ ,
32 TestLabel ” test isKnownCel l ’ ’ ” test i sKnownCel l ’ ’ ,
33 TestLabel ” testDeduce ” testDeduce ,
34 TestLabel ” testDeduce ’ ” testDeduce ’ ,
35 TestLabel ” testDeduce ’ ’ ” testDeduce ’ ’ ,
36 TestLabel ” testConverge ” testConverge ,
37 TestLabel ” testConverge ’ ” testConverge ’ ,
38 TestLabel ” testConverge ’ ’ ” testConverge ’ ’ ,
39 TestLabel ”testCommon” testCommon ,
40 TestLabel ”testCommon ’ ” testCommon ’ ,
41 TestLabel ”testCommon ’ ’ ” testCommon ’ ’ ,
42 TestLabel ”testCommon ’ ’ ’ ” testCommon ’ ’ ’ ,
43 TestLabel ”testCommon ’ ’ ’ ’ ” testCommon ’ ’ ’ ’ ,
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44 TestLabel ”testCommon ’ ’ ’ ’ ’ ” testCommon ’ ’ ’ ’ ’ ,
45 TestLabel ”testCommon ’ ’ ’ ’ ’ ’ ” testCommon ’ ’ ’ ’ ’ ’
46 ]
47
48 {− Valid Nonogram re turns True −}
49 testVeri fyNonogram : : Test
50 testVeri fyNonogram = TestCase $ as se r tEqua l ”verifyNonogram” True
51 ( verifyNonogram [ [ [ 1 , 1 ] , [ 2 ] , [ 3 ] ] , [ [ 1 , 1 ] , [ 1 , 1 ] , [ 1 ] ] ] )
52
53 {− I n v a l i d L i s t r a i s e s −}
54 testVerifyNonogram ’ : : Test
55 testVerifyNonogram ’ = TestCase $ as s e r tExcept i on I n v a l i dL i s t ( eva luate
56 ( verifyNonogram [ [ [ 4 ] , [ 2 ] , [ 3 ] ] ] ) : : IO Bool )
57
58 {− Valid c on s t r a i n t s re turn True −}
59 t e s tVe r i f yCon s t r a i n t s : : Test
60 t e s tVe r i f yCon s t r a i n t s = TestCase $ as se r tEqua l ” v e r i f yCon s t r a i n t s ” True
61 ( v e r i f yCon s t r a i n t s [ [ 1 , 1 ] , [ 2 ] , [ 3 ] ] 6)
62
63 {− In va l i dCons t r a in t r a i s e s −}
64 t e s tVe r i f yCons t r a i n t s ’ : : Test
65 t e s tVe r i f yCons t r a i n t s ’ = TestCase $ as s e r tExcept i on Inva l i dCons t r a in t ( eva luate
66 ( v e r i f yCon s t r a i n t s [ [ 1 , 1 ] , [ 2 ] , [ 3 ] ] 2) : : IO Bool )
67
68 {− ConstraintIsEmpty r a i s e s −}
69 t e s tVe r i f yCons t r a i n t s ’ ’ : : Test
70 t e s tVe r i f yCons t r a i n t s ’ ’ = TestCase $ as s e r tExcept i on ConstraintIsEmpty ( eva luate
71 ( v e r i f yCon s t r a i n t s [ [ ] ] 2) : : IO Bool )
72
73 {− ConstraintHasNegat iveValue r a i s e s −}
74 t e s tVe r i f yCons t r a i n t s ’ ’ ’ : : Test
75 t e s tVe r i f yCons t r a i n t s ’ ’ ’ = TestCase $ as s e r tExcept i on ConstraintHasNegativeValue
76 ( eva luate ( v e r i f yCon s t r a i n t s [ [ − 1 ] ] 2) : : IO Bool )
77
78 {− Transform works f o r mul t i e lement l i s t −}
79 testTransform : : Test
80 testTransform = TestCase $ as se r tEqua l ” trans form”
81 [ 1 , 1 ] ( trans form [ F i l l ed , Empty , F i l l e d ] )
82
83 {− Transform works f o r s i n g l e e lement l i s t −}
84 testTransform ’ : : Test
85 testTransform ’ = TestCase $ as se r tEqua l ” transform ’ ”
86 [ 1 ] ( trans form [ F i l l ed , Empty ] )
87
88
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89 {− So lve works f o r s o l v a b l e nonogram −}
90 t e s t S o l v e : : Test
91 t e s t S o l v e = TestCase $ as se r tEqua l ” s o l v e ”
92 [ [ [ F i l l ed , F i l l ed , Empty , Empty , Empty ] ,
93 [ F i l l e d , F i l l ed , F i l l ed , Empty , Empty ] ,
94 [ Empty , Empty , Empty , F i l l ed , F i l l e d ] ,
95 [ Empty , F i l l ed , F i l l ed , F i l l ed , Empty ] ,
96 [ F i l l e d , Empty , F i l l ed , F i l l ed , Empty ] ] ]
97 ( s o l v e [ [ 2 ] , [ 3 ] , [ 2 ] , [ 3 ] , [ 1 , 2 ] ] [ [ 2 , 1 ] , [ 2 , 1 ] , [ 1 , 2 ] , [ 3 ] , [ 1 ] ] )
98
99 {− So lve re turns [ ] f o r un so l v a b l e nonogram −}
100 t e s tSo lve ’ : : Test
101 t e s tSo lve ’ = TestCase $ as se r tEqua l ” s o l v e ” [ ] ( s o l v e [ [ 1 ] , [ 4 ] ] [ [ 2 ] ] )
102
103 {− F i l l e d i s a knonw c e l l −}
104 test i sKnownCel l : : Test
105 test i sKnownCel l = TestCase $ as se r tEqua l ” isKnownCell ” True ( isKnownCell F i l l e d )
106
107 {− Empty i s a knonw c e l l −}
108 test i sKnownCel l ’ : : Test
109 test i sKnownCel l ’ = TestCase $ as se r tEqua l ” isKnownCell ’ ” True ( isKnownCell Empty)
110
111 {− Empty i s a knonw c e l l −}
112 test i sKnownCel l ’ ’ : : Test
113 test i sKnownCel l ’ ’ = TestCase $ as se r tEqua l ” isKnownCell ’ ” False ( isKnownCell Unknown)
114
115 {− Deduce row works f o r empty rows and c o l s −}
116 testDeduce : : Test
117 testDeduce = TestCase $ as se r tEqua l ”deduce” (Just [ ] ) ( deduce [ ] [ ] )
118
119 {− Deduce row works f o r f u l l y d educ i b l e Nonogram −}
120 testDeduce ’ : : Test
121 testDeduce ’ = TestCase $ as se r tEqua l ”deduce ’ ” (Just [ [ F i l l e d ] ] )
122 ( deduce [ [ 1 ] ] [ [ 1 ] ] )
123
124 {− Deduce row works f o r un so l v a b l e Nonogram −}
125 testDeduce ’ ’ : : Test
126 testDeduce ’ ’ = TestCase $ as se r tEqua l ”deduce ’ ’ ” Nothing
127 ( deduce [ [ 1 , 1 ] , [ 1 , 1 ] ] [ [ 1 , 2 ] , [ 2 , 1 ] ] )
128
129 {− f i s cons t and re turns Nothing −}
130 testConverge : : Test
131 testConverge = TestCase $ as se r tEqua l ” converge ” Nothing ( converge
132 ( const Nothing ) [ [ F i l l ed , Empty ] , [ Empty , F i l l e d ] ] )
133
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134 {− f i s cons t and re turns something −}
135 testConverge ’ : : Test
136 testConverge ’ = TestCase $ as se r tEqua l ” converge ’ ”
137 (Just [ [ F i l l ed , Empty ] , [ Empty , F i l l e d ] ] )
138 ( converge ( const (Just [ [ F i l l ed , Empty ] , [ Empty , F i l l e d ] ] ) )
139 [ [ F i l l ed , Empty ] , [ Empty , F i l l e d ] ] )
140
141 {− f i s cons t and mod i f i e s the input −}
142 testConverge ’ ’ : : Test
143 testConverge ’ ’ = TestCase $ as se r tEqua l ” converge ’ ’ ”
144 (Just [ [ Empty , F i l l e d ] , [ F i l l e d , Empty ] ] )
145 ( converge (\x −> i f x == [ [ F i l l ed , Empty ] , [ Empty , F i l l e d ] ]
146 then Just [ [ Empty , F i l l e d ] , [ F i l l e d , Empty ] ]
147 else Just x )
148 [ [ F i l l ed , Empty ] , [ Empty , F i l l e d ] ] )
149
150 {− n=0 ks =[] −}
151 testCommon : : Test
152 testCommon = TestCase $ as se r tEqua l ”common” (Just [ ] ) (common 0 [ ] [ ] )
153
154 {− n>0 ks =[] −}
155 testCommon ’ : : Test
156 testCommon ’ = TestCase $ as se r tEqua l ”common ’ ” (Just [ ] )
157 (common 3 [ ] [ F i l l e d , Empty , Unknown ] )
158
159 {− n=0 ks=[ ] −}
160 testCommon ’ ’ : : Test
161 testCommon ’ ’ = TestCase $ as se r tEqua l ”common ’ ’ ” Nothing (common 0 [ 1 ] [ ] )
162
163 {− n>0 l en ( ks ) > l en ( p a r t i a l ) −}
164 testCommon ’ ’ ’ : : Test
165 testCommon ’ ’ ’ = TestCase $ as se r tEqua l ”common ’ ’ ’ ” Nothing
166 (common 3 [ 1 , 2 ] [ F i l l ed , Empty ] )
167
168 {− n>0 l en ( ks ) < l en ( p a r t i a l ) −}
169 testCommon ’ ’ ’ ’ : : Test
170 testCommon ’ ’ ’ ’ = TestCase $ as se r tEqua l ”common ’ ’ ’ ’ ”
171 (Just [ F i l l e d , Empty , Empty ] )
172 (common 3 [ 1 ] [ F i l l e d , Empty , Unknown ] )
173
174 {− n>0 l en ( ks ) == len ( p a r t i a l ) p a r t i a l i s known −}
175 testCommon ’ ’ ’ ’ ’ : : Test
176 testCommon ’ ’ ’ ’ ’ = TestCase $ as se r tEqua l ”common ’ ’ ’ ’ ’ ”
177 (Just [ F i l l e d , Empty , F i l l e d ] )
178 (common 3 [ 1 , 1 ] [ F i l l ed , Empty , F i l l e d ] )
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179
180 {− n>0 l en ( ks ) == len ( p a r t i a l ) p a r t i a l i s not known −}
181 testCommon ’ ’ ’ ’ ’ ’ : : Test
182 testCommon ’ ’ ’ ’ ’ ’ = TestCase $ as se r tEqua l ”common ’ ’ ’ ’ ’ ’ ”
183 (Just [ F i l l ed , Empty , F i l l e d ] )
184 (common 3 [ 1 , 1 ] [ F i l l ed , Unknown , F i l l e d ] )
185
186 main : : IO Counts
187 main = runTestTT t e s t s
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