
Minimax Mancala
Chance Onyiorah cco2134

Parallel Functional Programming

Fall 2022

Dec 21, 2022

I. The Game

Mancala is a two-player game with the goal to capture as many marbles as

possible. A wooden board contains two rows of six holes each and two pockets on

either side called mandalas that are used to store the marbles for each player as shown

in Figure 1. The game starts with 6 marbles in each of the six holes. Players take turns

choosing a hole on their side and distributing the marbles to the holes in a

counter-clockwise direction, making sure to drop a marble in their designated mancala

as they pass it. If the last marble lands on the opposing player's side, their turn ends. If

it lands in an empty pocket on their own side and there is at least one marble in the hole

directly across from it, the player gets to capture both holes’ marbles. If the last marble

lands in their store, they get to choose another hole. The game ends when either player

has an empty row. Any marbles that are not captured at this time, go to the player

whose side they were left on.

Figure 1. Diagram of Mancala game board

II. Minimax

Minimax is a search algorithm usually used in game-solving to find the best next

move. The algorithm works by using a minimizer and a maximizer where the player tries

to minimize and maximize their score respectively [1]. This score is calculated by

evaluating the current game state and determining which new game state will

minimize/maximize the score based on possible moves.

A tree with nodes of next possible games states and evaluates those nodes to

see which move has the highest evaluation score (Figure 2). Because there are so

many possible moves, a depth limit is passed in to indicate how far down the tree we

want to search [1].

Figure 2. Steps in example minimax tree

III. Alphabeta Pruning

The alphabeta technique is used to optimize the Minimax algorithm. Using this

technique, minimax is able to search the nodes of the tree faster. The algorithm will

know not to search certain branches of the tree because it will not hold the minimal or

maximum value [2]. It works by passing in alpha and beta values to the Minimax

algorithm. Alpha is the maximized value and beta is the minimized value. The

maximizer updates the alpha value to the maximum value found so far while the

minimizer updates the beta value to the minimum value found [3].

IV. Implementation and Parallelism

Below is a snippet of the sequential minimax implementation. The function takes

in the current game state, a boolean indicating whether or not we want to minimize or

maximize the score, a starting depth, and the depth limit of the tree. It then returns a

tuple of the score which is a result of the game board evaluation and the best move to

get that score (which is represented by a number on the board).

minimax :: (GameState a) => a -> Bool -> Int -> Int -> (Int, Maybe

Int)

minimax gs _ depth depthlimit | depth == depthlimit || gameOver gs =

(evaluate gs, Nothing)

minimax gs minimize depth depthlimit =

let minOrMax = (if minimize then minimumBy else maximumBy) (comparing

fst)

possibilities = (possibleMoves gs)

scores = map fst $ map (\poss -> (minimax (makePossibility gs

poss) (not minimize) (depth+1) depthlimit)) possibilities

wrappedPossibilities = map Just possibilities

scorePossPairs = zip scores wrappedPossibilities in

minOrMax scorePossPairs

The parallelized minimax algorithm is similar to the sequential, except that it

implements parList from the Control.Parallel.Strategies library to evaluate

each list element in parallel based on a given strategy. A strategy takes a data structure

as input and parallelizes it using rpar and rseq to then return the original value [4]. In

this case, the strategy is rseq which evaluates an argument to its Weak Head Normal

Form (WHNF) [4]. WHNF is defined as when the outermost part has been evaluated to

the lambda abstraction [5].

minimaxPar :: (GameState a) => a -> Bool -> Int -> Int -> (Int, Maybe

Int)

minimaxPar gs _ depth depthlimit | depth == depthlimit || gameOver gs =

(evaluate gs, Nothing)

minimaxPar gs minimize depth depthlimit =

let minOrMax = (if minimize then minimumBy else maximumBy) (comparing

fst)

possibilities = (possibleMoves gs)

scores = (map fst $ map (\poss -> (minimaxPar (makePossibility gs

poss) (not minimize) (depth+1) depthlimit)) possibilities) `using` parList rseq

wrappedPossibilities = map Just possibilities

scorePossPairs = zip scores wrappedPossibilities in

minOrMax scorePossPairs

V. Results and Conclusion

In order to test the results, two boards were tested with a depth limit that was

kept constant across all functions in order to accurately compare the data. It is expected

that the results will vary when tested with “harder” or more complicated boards. Tests

were conducted with the starting mancala board defined as

let board = Board $ V.fromList [6,6,6,6,6,6,0,6,6,6,6,6,6,0]

and a fixed depth limit of 8.

Avg. Running Time (s)

Minimax 4.249

AlphaBeta Pruning 0.764

Figure 3. Average running times of minimax and alphabeta pruning algorithms on

starting board

The average running times of the sequential minimax and alphabeta pruning

implementations are shown in Figure 3. The alpha beta pruning algorithm, even without

parallelism, was 3.485 seconds faster than the standard minimax. This is equivalent to a

82.02% decrease in time.

Parallel Minimax

Cores 1 2 4 6 8 10

Total
Running
Time (s)

4.456 2.438 1.344 1.916 2.173 2.073

Figure 4. Parallel Minimax running on increasing cores on starting board

Figure 4 displays the results of the parallel minimax algorithm using different

amounts of cores. The largest difference in time is seen with 4 cores at 1.344 seconds

which is ​​68.37% faster than the sequential minimax. There is an increase in the total

time at 6, 8, and 10 cores which contradicts the idea that parallelism is used to increase

performance. However, with the increase in new threads also comes an increase in the

time needed to create all those threads. This starts to outweigh the benefits of

parallelism especially since the algorithm was already running pretty quickly to begin

with. This can also be the result of hardware limitations when it comes to how many

threads the computer can make. With these results it can be inferred that alphabeta is

the most optimized when it comes to the starting game board and an alphabeta parallel

could possibly be even faster.

Parallel Minimax Threadscope and Runtime Data

Figure 5. Performance data of parallel minimax on 1 core

Figure 6. Parallel minimax on 1 core

Figure 7. Performance data of parallel minimax on 2 cores

Figure 8. Parallel minimax on 2 cores

Figure 9. Performance data of parallel minimax on 4 cores

Figure 10. Parallel minimax on 4 cores

Figure 11. Performance data of parallel minimax on 6 cores

Figure 12. Parallel minimax on 6 cores

Figure 13. Performance data of parallel minimax on 8 cores

Figure 14. Parallel minimax on 8 cores

Figure 15. Performance data of parallel minimax on 10 cores

Figure 16. Parallel minimax on 10 cores

From these Threadscope graphs, we can see that the effects of parallelism on the load

balancing between cores tapers off after 4 cores are used.

Board 2

let board = Board $ V.fromList [1,2,7,4,0,1,32,1,0,2,1,1,2,18]

Avg. Running Time (s)

Minimax 3.707

AlphaBeta Pruning 1.823
Figure 17. Average running times of minimax and alphabeta pruning algorithms on

Board 2

Parallel Minimax

Cores 1 2 4 6 8 10

Total
Running
Time (s)

3.840 1.822 1.217 1.660 1.620 1.797

Figure 18. Parallel Minimax running on increasing cores on Board 2

In Figure 17 we can see that the alphabeta function again ran faster than the

minimax algorithm, but with a significantly less speedup of 50.82%. Figure 18 also

displays the results of the parallel minimax algorithm on Board 2 with the increasing

number of cores. Again we see the least amount of time taken with 4 cores at 1.217

seconds which is ​​67.17% faster than the sequential minimax. In this case, the speedup

was more consistent in comparison to the results with the starting board. This can lead

us to think that the alphabeta function’s optimization is dependent on the board and the

efficiency of the original sequential minimax algorithm which already ran quickly to begin

with.

VI. Code

Play.hs

module Main where

import Data.List

import qualified Data.Vector as V

import Mancala

import Minimax

import System.Exit

import System.IO

import Text.Printf

{-

Starting game board

A B C D E F

P 6 6 6 6 6 6

0 0

6 6 6 6 6 6 C

L K J I H G

-}

-- translate letters into numeric spaces

--valid computer moves

getComputerMove :: String -> Int

getComputerMove "L" = 0

getComputerMove "K" = 1

getComputerMove "J" = 2

getComputerMove "I" = 3

getComputerMove "H" = 4

getComputerMove "G" = 5

getComputerMove "q" = 13 --quit

getComputerMove "Q" = 13 --quit

getComputerMove _ = 14 --invalid input

--valid player moves

getPlayerMove :: String -> Int

getPlayerMove "A" = 12

getPlayerMove "B" = 11

getPlayerMove "C" = 10

getPlayerMove "D" = 9

getPlayerMove "E" = 8

getPlayerMove "F" = 7

getPlayerMove "q" = 13 --quit

getPlayerMove "Q" = 13 --quit

getPlayerMove _ = 14 --invalid inpuy

-- translate numeric spaces into letters

getComputerLetter :: Int -> String

getComputerLetter 0 = "L"

getComputerLetter 1 = "K"

getComputerLetter 2 = "J"

getComputerLetter 3 = "I"

getComputerLetter 4 = "H"

getComputerLetter 5 = "G"

getComputerLetter _ = error "Invalid move"

--input move, check if move is valid

getMove :: Player -> Board -> IO Int

getMove p (Board b) = do

str <- getLine

let move = if p == Computer then getComputerMove str else getPlayerMove str

if (move == 14 || ((b V.! move) == 0 && move /= 13)) --invalid letter or hole that

is empty

then do

putStr "Invalid Move. Try again: "

hFlush stdout

getMove p (Board b)

else do

if move == 13 --quit key

then do

putStrLn "Quitting."

exitWith ExitSuccess

else return move

--identify who's turn it is

printPlayer :: Player -> IO ()

printPlayer Computer = putStrLn "Computer: "

printPlayer Player2 = putStrLn "You: "

--print marbles in each hole

printMarbles :: Board -> [Int] -> IO String

printMarbles (Board b) xs = do

lineStr <-

return

(foldl (\str n -> str ++ (printf "%3d" n)) "" (map (\i -> b V.! i) xs)

)

return lineStr

--print hole letters on top along with marbles

printTopRow :: Board -> IO ()

printTopRow b = do

str <- printMarbles b [12, 11 .. 7]

putStrLn $ " " ++ " " ++ "A B C D E F"

putStrLn $ " " ++ "P" ++ str

--print hole letters on bottom along with marbles

printBottomRow :: Board -> IO ()

printBottomRow b = do

str <- printMarbles b [0 .. 5]

putStrLn $ " " ++ " " ++ str ++ " C"

putStrLn $ " " ++ " " ++ "L K J I H G"

--print both stores

printStores :: Board -> IO ()

printStores (Board b) =

putStrLn $ " " ++ (show $ b V.! 13) ++ (replicate 20 ' ') ++ (show $ b V.!

6)

--print board

printBoard :: Board -> IO ()

printBoard b = do

printTopRow b

printStores b

printBottomRow b

--print board and get game input

printGameState :: MancalaGameState -> IO ()

printGameState (MancalaGameState b p _) = do

printPlayer p

printBoard b

applyMove :: MancalaGameState -> Int -> IO ()

applyMove gs move = return (distributeMarbles gs move) >>= playGame

humanMoveGS :: MancalaGameState -> IO Int

humanMoveGS (MancalaGameState board player _) = do

m <- getMove player board

putStrLn ""

return m

makeMoveGS :: MancalaGameState -> IO Int

makeMoveGS gs = do

let (score, move) = minimaxPar gs False 0 8

let Just x = move

if move == Just x

then do

printf "Computer move: '%s'.\n\n"

(getComputerLetter x)

return x

else error "Invalid move: Nothing"

playGame :: MancalaGameState -> IO()

-- if game is over print results

playGame (MancalaGameState board computer player) | rowEmpty board Computer ||

rowEmpty board Player2 = do

putStrLn $ "Game over. " ++ winString

printGameState (MancalaGameState board computer player)

where

other | player == Computer = Player2

| otherwise = Computer

winString | (evaluate (MancalaGameState board computer player) > 0) =

"Winner is " ++ (show player)

| (evaluate (MancalaGameState board computer player) < 0) =

"Winner is " ++ (show other)

| otherwise = "Tie."

-- else print current game state and get next move

playGame (MancalaGameState board Computer Computer) = do

printGameState (MancalaGameState board Computer Computer)

putStrLn "Computer's turn"

move <- makeMoveGS (MancalaGameState board Computer Computer)

applyMove (MancalaGameState board Computer Computer) move

playGame (MancalaGameState board Player2 x) = do

printGameState (MancalaGameState board Player2 x)

putStr "Enter move: "

hFlush stdout

move <- humanMoveGS (MancalaGameState board Player2 x)

applyMove (MancalaGameState board Player2 x) move

startGameState = MancalaGameState initialBoard Computer Computer

main = do

startGS <- return startGameState

playGame startGS

Mancala.hs

module Mancala where

import Data.List

import qualified Data.Vector as V

--import Minimax

class GameState a where

evaluate :: a -> Int

gameOver :: a -> Bool

possibleMoves :: a -> [Int]

makePossibility :: a -> Int -> a

isMaximizing :: a -> Bool

data Player = Computer | Player2

deriving (Eq, Show)

data Board = Board (V.Vector Int)

deriving (Show)

initialBoard = Board $ V.fromList [6,6,6,6,6,6,0,6,6,6,6,6,6,0]

data MancalaGameState = MancalaGameState Board Player Player

deriving Show

instance GameState MancalaGameState where

evaluate (MancalaGameState board _ player) = getScore board player

gameOver (MancalaGameState board _ _) = isGameOver board

possibleMoves (MancalaGameState board player _) = getPossibleMoves board player

makePossibility = distributeMarbles

isMaximizing (MancalaGameState _ computer player) = computer == player

rowEmpty :: Board -> Player -> Bool

rowEmpty (Board board) player =

rowTotal == 0

where rowTotal | player == Computer = board V.! 0 + board V.! 1 + board V.! 2 +

board V.! 3 + board V.! 4 + board V.! 5

| otherwise = board V.! 7 + board V.! 8 + board V.! 9 + board V.! 10

+ board V.! 11 + board V.! 12

mancalaTotal :: Board -> Player -> Int

mancalaTotal (Board board) player = board V.! (storePos player)

{-

Game is over when both rows are empty

Total 72 marbles are caught by players

-}

isGameOver :: Board -> Bool

isGameOver board

| totalPoints == 72 = True

| otherwise = False

where totalPoints = mancalaTotal board Computer + mancalaTotal board Player2

storePos :: Player -> Int

storePos p | p == Computer = 6

| otherwise = 13

getScore :: Board -> Player -> Int

getScore board player = (if (rowEmpty board Computer || rowEmpty board Player2) then

100 else 1) * (mancalaTotal board player - mancalaTotal board otherPlayer)

where otherPlayer

| player == Computer = Player2

| otherwise = Computer

getPossibleMoves :: Board -> Player -> [Int]

getPossibleMoves (Board board) player =

filter (\i -> (board V.! i) /= 0) rows

where rows | player == Computer = [0..5]

| otherwise = [7..12]

distributeMarbles :: MancalaGameState -> Int -> MancalaGameState

distributeMarbles (MancalaGameState (Board b) computer player) pos = (MancalaGameState

finalNewBoard nextPlayer player)

where

count = (b V.! pos)

boardGetMarbles = Board (b V.// [(pos, 0)])

(newBoard, nextPlayer) = placeStones boardGetMarbles computer (pos + 1) count

finalNewBoard | (rowEmpty newBoard Computer || rowEmpty newBoard Player2) =

endGameMove newBoard

| otherwise = newBoard

endGameMove :: Board -> Board

endGameMove (Board b) =

Board

$ b

V.// ([(6, (b V.! 6) + computerTotal), (13, (b V.! 13) + playerTotal)]

++ computerZeros

++ playerZeros

) where

totalFunc = \l -> sum $ map (\i -> b V.! i) l

computerTotal = totalFunc [0 .. 5]

playerTotal = totalFunc [7 .. 12]

zeroFunc = map (\i -> (i, 0))

computerZeros = zeroFunc [0 .. 5]

playerZeros = zeroFunc [7 .. 12]

nextPos :: Player -> Int -> Int

nextPos player pos | (player == Computer && pos == 12) = 0

| (player == Player2 && pos == 5) = 7

| pos == 13 = 0

| otherwise = pos + 1

placeLastStone :: Board -> Player -> Int -> (Board, Player)

placeLastStone (Board board) player pos

| board V.! pos == 0 && board V.! ((-) 12 pos) /= 0 && playerHole == player

= (Board $ board V.// [(holeAcross, 0), (storePos player, newCount)], otherPlayer)

where

holeAcross = (-) 12 pos

holeAcrossCount = (board V.! holeAcross)

newCount = (mancalaTotal (Board board) player) + holeAcrossCount + 1

otherPlayer | player == Computer = Player2

| otherwise = Computer

playerHole | pos >= 0 && pos <= 6 = Computer

| otherwise = Player2

placeLastStone (Board board) player pos =

(newBoard, nextPlayer)

where newBoard = Board $ board V.// [(pos, (board V.! pos) + 1)]

otherPlayer | player == Computer = Player2

| otherwise = Computer

nextPlayer | pos == storePos player = player

| otherwise = otherPlayer

-- get only changes updates to update score

takeReverse :: [Int] -> Int -> [Int]

takeReverse listUpdates count = takeReverse' listUpdates count []

where takeReverse' (x : _) 1 acc = x : acc

takeReverse' (x : xs) count acc = takeReverse' xs (count - 1) (x : acc)

placeStones :: Board -> Player -> Int -> Int -> (Board, Player)

placeStones (Board b) player pos count = placeLastStone intermediateBrd player newPos

where allUpdates = iterate (\i -> nextPos player i) pos

currUpdates = takeReverse allUpdates count

intermediateBrd = Board $ b V.// (map (\l -> (head l, (b V.! head l) + length

l)) $ group . sort $ tail currUpdates)

newPos = head currUpdates

Minimax.hs

module Minimax

where

import Debug.Trace

import Data.List

import Data.Ord

import Mancala

import qualified Data.Vector as V

import Control.Parallel.Strategies

{-

--Test:

main :: IO()

main = do

let board = Board $ V.fromList [6,6,6,6,6,6,0,6,6,6,6,6,6,0]

let gs = MancalaGameState board Computer Player2

--print (minimax gs False 0 8)

--print (minimaxPar gs False 0 8)

print (alphabeta gs 0 8 (-1000) 1000)

-}

-- ghc -threaded -rtsopts -eventlog --make -main-is Minimax Minimax.hs -package

vector

-- time ./Minimax +RTS -ls -s

-- time ./Minimax +RTS -N2 -ls -s

minimax :: (GameState a) => a -> Bool -> Int -> Int -> (Int, Maybe Int)

minimax gs _ depth depthlimit | depth == depthlimit || gameOver gs = (evaluate gs,

Nothing)

minimax gs minimize depth depthlimit =

let minOrMax = (if minimize then minimumBy else maximumBy) (comparing fst)

possibilities = (possibleMoves gs)

scores = map fst $ map (\poss -> (minimax (makePossibility gs poss) (not

minimize) (depth+1) depthlimit)) possibilities

wrappedPossibilities = map Just possibilities

scorePossPairs = zip scores wrappedPossibilities in

minOrMax scorePossPairs

minimaxPar :: (GameState a) => a -> Bool -> Int -> Int -> (Int, Maybe Int)

minimaxPar gs _ depth depthlimit | depth == depthlimit || gameOver gs = (evaluate gs,

Nothing)

minimaxPar gs minimize depth depthlimit =

let minOrMax = (if minimize then minimumBy else maximumBy) (comparing fst)

possibilities = (possibleMoves gs)

scores = (map fst $ map (\poss -> (minimaxPar (makePossibility gs poss) (not

minimize) (depth+1) depthlimit)) possibilities) `using` parList rseq

wrappedPossibilities = map Just possibilities

scorePossPairs = zip scores wrappedPossibilities in

minOrMax scorePossPairs

{-

alphabeta :: (GameState a) => a -> Int -> Int -> Int -> Int -> (Int, Maybe Int)

alphabeta gs _ _ _ _ | gameOver gs = (evaluate gs, Nothing)

alphabeta gs depth depthlimit _ _ | depth == depthlimit = (evaluate gs, Nothing)

alphabeta gs depth depthlimit alpha beta =

alphabetafold possibilities alpha beta (-1)

where possibilities = possibleMoves gs

alphabetafold [] a _ bestChild = (a, Just bestChild)

alphabetafold (x:xs) a b bestChild =

let child = makePossibility gs x

newAlpha = (if (isMaximizing child) then alphabetamax else

alphabetamin) child (depth+1) depthlimit a b in

if (newAlpha >= b)

then (newAlpha, Just x)

else alphabetafold xs (max a newAlpha) b (if newAlpha > a then x else

bestChild)

alphabetamax :: (GameState a) => a -> Int -> Int -> Int -> Int -> Int

alphabetamax gs _ _ _ _ | gameOver gs = evaluate gs

alphabetamax gs depth depthlimit _ _ | depth == depthlimit = evaluate gs

alphabetamax gs depth depthlimit alpha beta =

alphabetaHelper gs possibilities alpha beta depth depthlimit

where possibilities = possibleMoves gs

alphabetamin :: (GameState a) => a -> Int -> Int -> Int -> Int -> Int

alphabetamin gs _ _ _ _ | gameOver gs = evaluate gs

alphabetamin gs depth depthlimit _ _ | depth == depthlimit = evaluate gs

alphabetamin gs depth depthlimit alpha beta =

alphabetaHelper gs possibilities alpha beta depth depthlimit

where possibilities = possibleMoves gs

alphabetaHelper :: (GameState a) => a -> [Int] -> Int -> Int -> Int -> Int -> Int

alphabetaHelper _ [] _ b _ _= b

alphabetaHelper gs (x:xs) a b depth depthlimit =

let child = makePossibility gs x

newBeta = (if (isMaximizing child) then alphabetamax else alphabetamin) child

(depth+1) depthlimit a b in

if (newBeta <= a)

then newBeta

else alphabetaHelper gs xs a (min b newBeta) depth depthlimit

-}

References

[1] https://www.baeldung.com/java-minimax-algorithm

[2] https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-4-alpha-beta-pruning/amp/

[3] https://www.cs.cornell.edu/courses/cs312/2002sp/lectures/rec21.htm

[4] https://www.oreilly.com/library/view/parallel-and-concurrent/9781449335939/ch03.html

[5]

https://medium.com/@aleksandrasays/brief-normal-forms-explanation-with-haskell-cd5dfa94a157#:~:text

=An%20expression%20is%20in%20weak,would%20be%20in%20normal%20form.

[6] https://github.com/vagueanxiety/mancala (Referenced for code)

[7] https://gitlab.haskell.org/Abhiroop/nofib/-/blob/master/parallel/minimax/Game.hs (Referenced for code)

https://www.baeldung.com/java-minimax-algorithm
https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-4-alpha-beta-pruning/amp/
https://www.cs.cornell.edu/courses/cs312/2002sp/lectures/rec21.htm
https://www.oreilly.com/library/view/parallel-and-concurrent/9781449335939/ch03.html
https://github.com/vagueanxiety/mancala
https://gitlab.haskell.org/Abhiroop/nofib/-/blob/master/parallel/minimax/Game.hs

