Minimax Mancala

Chance Onyiorah cco2134

Parallel Functional Programming

Fall 2022

Dec 21, 2022

. The Game

Mancala is a two-player game with the goal to capture as many marbles as
possible. A wooden board contains two rows of six holes each and two pockets on
either side called mandalas that are used to store the marbles for each player as shown
in Figure 1. The game starts with 6 marbles in each of the six holes. Players take turns
choosing a hole on their side and distributing the marbles to the holes in a
counter-clockwise direction, making sure to drop a marble in their designated mancala
as they pass it. If the last marble lands on the opposing player's side, their turn ends. If
it lands in an empty pocket on their own side and there is at least one marble in the hole
directly across from it, the player gets to capture both holes’ marbles. If the last marble
lands in their store, they get to choose another hole. The game ends when either player
has an empty row. Any marbles that are not captured at this time, go to the player

whose side they were left on.

YOUR
OPPONENT
MANCALA

YOU OPPONENT

: HnLEs

YOUR
MANCALA

YOUR SIDE
HOLES

Figure 1. Diagram of Mancala game board

[I. Minimax

Minimax is a search algorithm usually used in game-solving to find the best next
move. The algorithm works by using a minimizer and a maximizer where the player tries
to minimize and maximize their score respectively [1]. This score is calculated by
evaluating the current game state and determining which new game state will
minimize/maximize the score based on possible moves.

A tree with nodes of next possible games states and evaluates those nodes to
see which move has the highest evaluation score (Figure 2). Because there are so
many possible moves, a depth limit is passed in to indicate how far down the tree we

want to search [1].

Figure 2. Steps in example minimax tree

lll. Alphabeta Pruning

The alphabeta technique is used to optimize the Minimax algorithm. Using this
technique, minimax is able to search the nodes of the tree faster. The algorithm will
know not to search certain branches of the tree because it will not hold the minimal or
maximum value [2]. It works by passing in alpha and beta values to the Minimax
algorithm. Alpha is the maximized value and beta is the minimized value. The
maximizer updates the alpha value to the maximum value found so far while the

minimizer updates the beta value to the minimum value found [3].

IV. Implementation and Parallelism

Below is a snippet of the sequential minimax implementation. The function takes
in the current game state, a boolean indicating whether or not we want to minimize or
maximize the score, a starting depth, and the depth limit of the tree. It then returns a
tuple of the score which is a result of the game board evaluation and the best move to

get that score (which is represented by a number on the board).

minimax :: (GameState a) => a -> Bool -> Int -> Int -> (Int, Maybe
Int)
minimax gs _ depth depthlimit | depth == depthlimit || gameOver gs =
(evaluate gs, Nothing)
minimax gs minimize depth depthlimit =
let minOrMax = (if minimize then minimumBy else maximumBy) (comparing
fst)
possibilities = (possibleMoves gs)
scores = map fst $ map (\poss -> (minimax (makePossibility gs
poss) (not minimize) (depth+l) depthlimit)) possibilities
wrappedPossibilities = map Just possibilities
scorePossPairs = zip scores wrappedPossibilities in

minOrMax scorePossPairs

The parallelized minimax algorithm is similar to the sequential, except that it

implements parList from the Control.Parallel.Strategies library to evaluate

each list element in parallel based on a given strategy. A strategy takes a data structure
as input and parallelizes it using rpar and rseq to then return the original value [4]. In
this case, the strategy is rseq which evaluates an argument to its Weak Head Normal
Form (WHNF) [4]. WHNF is defined as when the outermost part has been evaluated to

the lambda abstraction [5].

minimaxPar :: (GameState a) => a -> Bool -> Int -> Int -> (Int, Maybe
Int)

minimaxPar gs _ depth depthlimit | depth == depthlimit || gameOver gs =
(evaluate gs, Nothing)

minimaxPar gs minimize depth depthlimit =

let minOrMax = (if minimize then minimumBy else maximumBy) (comparing
fst)
possibilities = (possibleMoves gs)
scores = (map fst $ map (\poss -> (minimaxPar (makePossibility gs

poss) (not minimize) (depth+l) depthlimit)) possibilities) “using ™ parlList rseq
wrappedPossibilities = map Just possibilities
scorePossPairs = zip scores wrappedPossibilities in

minOrMax scorePossPairs

V. Results and Conclusion

In order to test the results, two boards were tested with a depth limit that was
kept constant across all functions in order to accurately compare the data. It is expected
that the results will vary when tested with “harder” or more complicated boards. Tests

were conducted with the starting mancala board defined as
let board = Board $ V.fromlList [6,6,6,6,6,6,0,6,6,6,6,6,6,0]

and a fixed depth limit of 8.

Avg. Running Time (s)

Minimax 4.249

AlphaBeta Pruning 0.764

Figure 3. Average running times of minimax and alphabeta pruning algorithms on

starting board

The average running times of the sequential minimax and alphabeta pruning
implementations are shown in Figure 3. The alpha beta pruning algorithm, even without
parallelism, was 3.485 seconds faster than the standard minimax. This is equivalent to a

82.02% decrease in time.

Parallel Minimax
Cores 1 2 4 6 8 10
Total 4.456 2.438 1.344 1.916 2173 2.073
Running
Time (s)

Figure 4. Parallel Minimax running on increasing cores on starting board

Figure 4 displays the results of the parallel minimax algorithm using different
amounts of cores. The largest difference in time is seen with 4 cores at 1.344 seconds
which is 68.37% faster than the sequential minimax. There is an increase in the total
time at 6, 8, and 10 cores which contradicts the idea that parallelism is used to increase
performance. However, with the increase in new threads also comes an increase in the
time needed to create all those threads. This starts to outweigh the benefits of
parallelism especially since the algorithm was already running pretty quickly to begin
with. This can also be the result of hardware limitations when it comes to how many

threads the computer can make. With these results it can be inferred that alphabeta is

the most optimized when it comes to the starting game board and an alphabeta parallel
could possibly be even faster.

Parallel Minimax Threadscope and Runtime Data

(base) chanceonyiorah@Chances-MBP src % time ./Minimax +RTS -N1 -1s -s
(1,Just @)
12,805,823,000 bytes allocated in the heap
54,384,616 bytes copied during GC
83,440 bytes maximum residency (9 sample(s))
29,056 bytes maximum slop
3 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen @ 12319 colls, @ par 0.160s 0.200s 0.0000s 0.0004s
Gen 1 9 colls, @ par 0.001s 0.001s 0.0002s 0.0003s

TASKS: 4 (1 bound, 3 peak workers (3 total), using -N1)
SPARKS: 1179392 (@ converted, @ overflowed, @ dud, 1132858 GC'd, 46534 fizzled)
INIT time 0.000s 0.008s elapsed)
time 4.161s 4.236s elapsed)
time 0.162s 0.201s elapsed)
time 0.000s 0.011s elapsed)
time 4.323s 4.456s elapsed)
Alloc rate 3,077,455,082 bytes per MUT second

Productivity 96.2% of total user, 95.1% of total elapsed

./Minimax +RTS -N1 -1s -s 4.33s user 0.11ls system 92% cpu 4.781 total

Figure 5. Performance data of parallel minimax on 1 core

Timeline

Activity

[« I2]

Time | Heap I GC | Spark stats | Spark sizes | Process info | Raw events

Totaltime: 4.456s

Mutator time: 4.272s

GC time: 184.656ms

Productivity: 95.9% of mutator vs total

Figure 6. Parallel minimax on 1 core

(base) chanceonyiorah@Chances-MBP src % time ./Minimax +RTS N2 -1s -s
(1,Just @)
12,806,112,784 bytes allocated in the heap
52,965,488 bytes copied during GC
168,144 bytes maximum residency (9 sample(s))
36,256 bytes maximum slop
4 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen @ 6282 colls, 6282 par 0.261s 0.162s 0.0000s 0.0009s
Gen 1 9 colls, 8 par 0.002s 0.001s 0.0001s 0.0002s
Parallel GC work balance: 74.01% (serial 0%, perfect 100%)

TASKS: 6 (1 bound, 5 peak workers (5 total), using -N2)

SPARKS: 1179392 (13 converted, @ overflowed, @ dud, 1132053 GC'd, 47326 fizzled)

INIT time 0.000s 0.007s elapsed)
time 4.350s 2.265s elapsed)
time 0.263s 0.163s elapsed)
time 0.000s 0.002s elapsed)
time 4.614s 2.438s elapsed)

Alloc rate 2,943,820,957 bytes per MUT second
Productivity 94.3% of total user, 92.9% of total elapsed

./Minimax +RTS -N2 -1s -s 4.62s user @.13s system 193% cpu 2.453 total

Figure 7. Performance data of parallel minimax on 2 cores

Timeline

Os 0.5 1s 1.5s 2s |

Activity

- 0 A O

«]

Time |Hsap |GC |Spark stats | Spark sizes | Process info | Raw events

Totaltime: 2.438s

Mutator time: 2.292s

GC time: 146.047ms

Productivity: 94.0% of mutator vs total

Figure 8. Parallel minimax on 2 cores

(base) chanceonyiorah@Chances-MBP src % time ./Minimax +RTS -N4 -1s -s
(1,Just 3)
12,806,931,592 bytes allocated in the heap
53,865,456 bytes copied during GC
365,064 bytes maximum residency (12 sample(s))
62,312 bytes maximum slop
6 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen @ 3243 colls, 3243 par 0.418s 0.125s 0.0000s 0.0004s
Gen 1 12 colls, 11 par 0.005s 0.002s 0.0002s 0.0006s

Parallel GC work balance: 72.71% (serial 0%, perfect 100%)

TASKS: 10 (1 bound, 9 peak workers (9 total), using -N4)

SPARKS: 1179392 (70 converted, @ overflowed, @ dud, 1129435 GC'd, 49887 fizzled)

INIT time 0.001s 0.009s elapsed)
time 4.395s 1.197s elapsed)
time 0.423s 0.127s elapsed)
time 0.000s 0.011s elapsed)
time 4,820s 1.344s elapsed)

Alloc rate 2,913,658,730 bytes per MUT second

Productivity 91.2% of total user, 89.1% of total elapsed

./Minimax +RTS N4 -1s -s 4.82s user 0.13s system 299% cpu 1.654 total

Figure 9. Performance data of parallel minimax on 4 cores

Timeline

0Os 0.5s 1s =

mw M
|
|

Figure 10. Parallel minimax on 4 cores

(base) chanceonyiorah@Chances-MBP src % time ./Minimax +RTS -N6 -1s -s
(1,Just 3)
12,816,902,712 bytes allocated in the heap
73,544,136 bytes copied during GC
557,744 bytes maximum residency (32 sample(s))
84,768 bytes maximum slop
8 MiB total memory in use (@ MB lost due to fragmentation)

Gen @
Gen 1

Tot time (elapsed) Avg pause Max pause

3008 colls, 3008 par 1.816s ©0.335s

32 colls, 31 par 0.030s 0.010s

0.0001s 0.0020s
0.0003s 0.0047s

Parallel GC work balance: 68.99% (serial 0%, perfect 100%)

TASKS: 14 (1 bound, 13 peak workers (13 total), using -N6)

SPARKS: 1179458 (1212 converted, @ overflowed, @ dud, 1098493 GC'd, 79753 fizzled)

INIT time
time
time
time
time

Alloc rate

Productivity

0.001s 0.009s elapsed)
5.057s 1.556s elapsed)
1.846s 0.345s elapsed)
0.000s 0.006s elapsed)
6.904s 1.916s elapsed)

2,534,389,157 bytes per MUT second

73.2% of total user, 81.2% of total elapsed

./Minimax +RTS -N6 -1s -s 6.91s user 0.31s system 373% cpu

1.933 total

Figure 11. Performance data of parallel minimax on 6 cores

Timeline

HECO

[«

LRI R AT R R R R R R L D

R 1 T e e
SR 11 T e T
SR 11 T TR A i |

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

1<l

Total time: [EIGE
Mutator time: 1.616s
GC time: 300.851ms

Productivity: 84.3% of mutator vs total

Figure 12. Parallel minimax on 6 cores

(base) chanceonyiorah@Chances-MBP src % time ./Minimax +RTS -N8 -1s -s
(1,Just 3)
12,827,312,808 bytes allocated in the heap
75,942,536 bytes copied during GC
825,192 bytes maximum residency (48 sample(s))
109,400 bytes maximum slop
11 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 2531 colls, 2531 par 1.828s 0.454s 0.0002s 0.0070s
Gen 1 48 colls, 47 par 0.046s 0.012s 0.0002s 0.0005s
Parallel GC work balance: 63.63% (serial 0%, perfect 100%)
TASKS: 18 (1 bound, 17 peak workers (17 total), using -N8)
SPARKS: 1179401 (2699 converted, @ overflowed, @ dud, 1078996 GC'd, 97706 fizzled)
INIT time 0.001s 0.008s elapsed)

time 5.284s 1.693s elapsed)

time 1.874s 0.466s elapsed)

time 0.000s 0.006s elapsed)

time 7.159s 2.173s elapsed)
Alloc rate 2,427,409,014 bytes per MUT second

Productivity 73.8% of total user, 77.9% of total elapsed

./Minimax +RTS -N8 -1s —-s 7.16s user 0.36s system 343% cpu 2.191 total

Figure 13. Performance data of parallel minimax on 8 cores

Timeline

bl

HECO

(T S AT T A T T T

N A SOAURURRNE VYR RERAD A WACVORN USRI | ORIV 11 R RSN URREISR ORRRAITOT
T e T T
" N O OO 0 1 0 AU RN FEROOERT
" | NN AR, SR DU S0 AR) R0 O A
R I TR T e e T
B L e D L

[« I2]

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total time: ~ 2.173s il
Mutator time: 1.804s
GC time: 369.462ms =
Productivitv: 83.0% of mutator vs total =

Figure 14. Parallel minimax on 8 cores

(base) chanceonyiorah@Chances-MBP src % time ./Minimax +RTS -N1@ -1s -s
(1,Just 3)
12,826,186,136 bytes allocated in the heap

100,957,624 bytes copied during GC

1,056,192 bytes maximum residency (44 sample(s))
132,896 bytes maximum slop
13 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen @ 2495 colls, 2495 par 2.292s 0.421s 0.0002s 0.0012s
Gen 1 44 colls, 43 par 0.055s 0.011s 0.0003s 0.0007s

Parallel GC work balance: 62.82% (serial 0%, perfect 100%)

TASKS: 22 (1 bound, 21 peak workers (21 total), using -N10)

SPARKS: 1179436 (2923 converted, © overflowed, @ dud, 1075211 GC'd, 101302 fizzled)

time 0.001s 0.010s elapsed)
time 4.806s 1.627s elapsed)
time 2.347s 0.432s elapsed)
time 0.000s 0.004s elapsed)
time 7.154s 2.073s elapsed)

Alloc rate 2,668,991,606 bytes per MUT second

Productivity 67.2% of total user, 78.5% of total elapsed

./Minimax +RTS -N1@ -1s -s 7.16s user @.37s system 359% cpu 2.091 total

Figure 15. Performance data of parallel minimax on 10 cores

Timeline

HECO.

HEC1

HEC2

HEC3

HEC4

HECS.

HEC6.

HEC7

HEC8.

(0 N COMUOU T OO0 OO 0010 0 T 0 00000 OO

1 I RURITITNT T OO T RO g T e Ty
B D N 0 |00 W e
NN YR ORRO A OB 1 | HORUBN | VS RO R ANREALE AR
T OO 0 A 0O RN WAL
T e A g
[e R
L e T A T Ty
T T T e e T

1}

[«

Time | Heap I GC | Spark stats | Spark sizes | Process info | Raw events |

ante D N72e\

Figure 16. Parallel minimax on 10 cores

From these Threadscope graphs, we can see that the effects of parallelism on the load

balancing between cores tapers off after 4 cores are used.

Board 2

let board = Board $ V.fromList [1,2,7,4,0,1,32,1,0,2,1,1,2,18]

Avg. Running Time (s)

Minimax 3.707

AlphaBeta Pruning 1.823

Figure 17. Average running times of minimax and alphabeta pruning algorithms on

Board 2
Parallel Minimax
Cores 1 2 4 6 8 10
Total 3.840 1.822 1.217 1.660 1.620 1.797
Running
Time (s)

Figure 18. Parallel Minimax running on increasing cores on Board 2

In Figure 17 we can see that the alphabeta function again ran faster than the
minimax algorithm, but with a significantly less speedup of 50.82%. Figure 18 also
displays the results of the parallel minimax algorithm on Board 2 with the increasing
number of cores. Again we see the least amount of time taken with 4 cores at 1.217
seconds which is 67.17% faster than the sequential minimax. In this case, the speedup
was more consistent in comparison to the results with the starting board. This can lead

us to think that the alphabeta function’s optimization is dependent on the board and the

efficiency of the original sequential minimax algorithm which already ran quickly to begin

with.

VI. Code

Play.hs

Player Board IO Int

IO String

MancalaGameState

MancalaGameState

MancalaGameState IO Int

MancalaGameState IO Int

MancalaGameState

Mancala.hs

GameState

Vector Int

MancalaGameState
Show

GameState MancalaGameState

Board Player Player

Board Player Bool

Board Player

Board Bool

Board Player

MancalaGameState MancalaGameState

Board, Player

Player Board, Player

Minimax.hs

GameState Int, Maybe Int

GameState Int, Maybe Int

References

[1] https://www.baeldung.com/java-minimax-algorithm

[3] https://www.cs.cornell.edu/courses/cs312/2002sp/lectures/rec21.htm

[4] https://www.oreilly.com/library/view/parallel-and-concurrent/9781449335939/ch03.html

[5]
https://medium.com/@aleksandrasays/brief-normal-forms-explanation-with-haskell-cd5dfa94a157#:~:text
=An%20expression%20is%20in%20weak,would%20be%20in%20normal%20form.

[6] https://github.com/vagueanxiety/mancala (Referenced for code)

[7] https://gitlab.haskell.org/Abhiroop/nofib/-/blob/master/parallel/minimax/Game.hs (Referenced for code)

https://www.baeldung.com/java-minimax-algorithm
https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-4-alpha-beta-pruning/amp/
https://www.cs.cornell.edu/courses/cs312/2002sp/lectures/rec21.htm
https://www.oreilly.com/library/view/parallel-and-concurrent/9781449335939/ch03.html
https://github.com/vagueanxiety/mancala
https://gitlab.haskell.org/Abhiroop/nofib/-/blob/master/parallel/minimax/Game.hs

