Team Light Speed
Adam Carpentieri AC4409
Souryadeep Sen SS6400

FPGA Raycasting .z

Final Report

_#f

FLOOR| SCORE |LIVES | i |HEALTH| AMMO

8§ 715900 9 & | 89/ 845

1 OVERVIEW
2 RAYCASTING ALGORITHM

3 SYSTEM DESIGN AND COMPONENTS
31 SOFTWARE
3.2 HARDWARE

4 HARDWARE
41 COLUMN DECODER & RENDERER
411 Design Assumptions
4.2 Column Data
4.1.3 Six Stage Pixel Pipeline
4.4 Triple Buffering
4.5 Scaling Factors - Several Approaches
4.1.6 Array Storage and Retrieval - Double Barrel Design
4.2 TILE-BASED CHARACTER RENDERER
4.2.1 General Principles
4.2.2 Two Stage Pixel Pipeline
4.2.3 Font Data Storage and Retrieval

5 SOFTWARE
5.1 Game Loop
5.2 Renderer
5.3 Pause Menu, Finish Game
5.4 Timing With VBLANK
5.5 Maps / Maze
5.6 USB Interface & Threads

6 HARDWARE-SOFTWARE INTERFACE
6.1 General Principles
6.2 Send Columns & Timing
6.3 Tile Based Character Rendering
6.4 REGISTER MAP

7 RESOURCE BUDGET
71 RESOURCE TABLE
7.2 GRAPHICS

8 MILESTONES
8.1 Milestone 1
8.2 Milestone 2
8.3 Milestone 3

9 PLAYER INPUT

n

0 N N b

© O O v

10
11
11

12

12

12

12

13
13
13
13
14
14
15

15
15
15
16
16

16
16
17

18
18
18
18

18

10 RESULTS
11 LESSONS LEARNED

12 GROUP MEMBER CONTRIBUTIONS
12.1 Adam
12.2 Souryadeep

13 FUTURE WORK
131 Floor / Ceiling Texturing
13.2 Jumping
13.3 Music / Sound Effects
13.4 On Screen Elements and Enemies

14 CODE LISTING

14.1 Hardware Files
141.1 column.decoder.sv

14.2 Software Files
14.2.1 column_decoder.c
14.2.2 column_decoder.h
14.2.3 mazes.c
14.2.4 mazes.h
14.2.1 usb_devices.c
14.2.1 usb_devices.h
14.2.1 raycaster.c

19

19

19
19
20

20
20
20
20
20

21
21
21
33
33
40
M
44
45
53
54

1 OVERVIEW

FPGA Raycasting is a project to implement raycasting techniques originally developed in the mid
1990’s with games such as Wolfenstein, in FPGA hardware. Pioneered by John Carmack, who
took cutting edge research papers and turned the idea into a working game in the span of

several weeks. The technique allowed a full 3d game to run on low end PCs of the time.

Our ultimate goal was to replicate the visual style of https://js-dos.com/Wolf/.

The result of our efforts has seen us progress from a low resolution software renderer to a
high(er) resolution hardware renderer running in smooth 60 frames per second with full visual
fidelity.

Our project benefits from substantial memory savings by avoiding writing to the frame buffer, a
speed up since all display operations are done in hardware, and the perfect timing of the
hardware which is not prone to scheduling or interrupts. This all leads to a very smooth

experience for the user.

Our Github repo is https://github.com/4840-Raycasting-Project/raycasting-prj/.

2 RAYCASTING ALGORITHM

Raycasting is a technique to transform a limited form of data such as a simplified 2D floor plan
into a 3D projection by tracing rays from a viewpoint (in our case, the player), to the viewing
volume (the VGA screen). Ray casting determines the visibility of surfaces by tracing imaginary
rays of light from the viewer’s eye to the object in the scene (which will be the textured walls in
our implementation). Ray casting sounds much like ray tracing, but must be noted, thatitis a
special case implementation of ray tracing, due to geometric constraints, which makes the
algorithm much faster and simpler compared to ray tracing, but at the same time, images appear

blocky and less accurate.
The geometric constraints mentioned above are

1. Walls are at 90 degree angle with the floor
2. Walls are made of cubes that have the same size

3. Floor is always flat

The entire algorithm is based on basic trigonometry, that computes distances to intersections on
the grid, distance to next intersections on the grid, height of walls, distance to walls. As a result,
we pre-compute these math operations for tan, cos, sine and their inverses in static arrays that

are indexed based on player position, field of view and viewing angles.

https://js-dos.com/Wolf/
https://github.com/4840-Raycasting-Project/raycasting-prj/

Some projection attributes defined:

The map layout is made up of 64x64 pixel grids
Players height is 32 pixels tall

Wall height is 64 pixels tall

FOV (Field of View) is 60 degrees

The walls are made of 64x64x64 cubes

aoNwN S

Below are some images of what the ray casting algorithm translates to (these images are taken
from https://permadi.com/1996/05/ray-casting-tutorial-table-of-contents/ :

A simple 2D world: The 3D projection:

4 simple ZD world

The 3D projection

Wall

Viewpoint (ray origin)

2D grid: Corresponding 3D world:

consists of 64z 4 smaller urdts).

3D world made of cubes

A 64x64x64 cube
2D grid map of the world (each grid . /

-

A world consists of cubes.

Field of View: Field and point of view on the grid:
60 degrees
Direction }/ FOv
ﬁr the player
iz looking
at
Imaginary
rays NogsE” field
out from of view
player’s
E¥ES. point of view field of wiew
~_ Player

The projection plane: The ray cast on the screen (projection plane)

https://permadi.com/1996/05/ray-casting-tutorial-table-of-contents/

Center at
{320,200)

200 pixels

320 pixels

Horizontal intersection with walls on grid:
CHECKING HORIZONTAL INTERSECTIONS

)3

2,1

Tani«) = 64 / Xa;
Xa = 64/Tan(a)

vhere is the angle of the
A ray that is being cast

»|

Ta = 64

m
F
g
[«

Vertical intersection with walls on grid:
CHECKING VERTICATL INTERSECTIONS

T
|

l lgKamEd)

B 122

« Note that Xa=grid width=64
So:
Tantal = Ya / 64:

PiPx, Py} Ya = 64*Tan(a)

pa-Kazed

The horizontal intersection math:
(based on grid points above assuming alpha is
60 degrees and 64x64 grid size)
Ray facing up:

e Ay =rounded_down(Py/64)* (64)-1;
Ray facing down:

e Ay =rounded_down(Py/64)* (64) + 64;
X intersection point:

e AXx=Px+ (Py-Ay)/tan(ALPHA);

If you were observing closely, the next x
intersection would be at 64/tan(alpha), and the
next y intersection would be at Ya-64 (facing
up) and Ya+64(facing down). So we can
conveniently add the values to the current
intersection, till we hit a grid that has a wall.

The vertical intersection math:

(based on grid points above assuming alpha is
60 degrees and 64x64 grid size)

The math is the same as for the horizontal
intersection, except now the role of X and Y
gets swapped in finding the intersection
points. Hope you see it :)

Distance to the wall:

Height of the wall:

Projected wall height actual wall height

distance of player to the projection plane distance to the wall

Two ways of finding distance: projection plane

PD=square root{ (l?x—Dx)2 +(Py—Dy)2

Prox oy PE-Square root { { Px-Ex)*+(Py-Ey)? -
; or % PR T Preleenen
PD=ABS (Px-Dx) /cos (a) = el e
ABS (Py-Dy) /sin (o)
: pE:ABS (PX_EX) /COS (a} - l
P T T ABS (Py-Ey) /sin (o) '

(where ABS=absolute wvalue)
distance of player

|¢—— to projection plane *|
|4— diatance of player to the wall
—

fray length}

200

Example of wall appearing smaller the
further it is from the player >>>>>>>>>>

center of
G -eeeeeemnees [projection

¢ plane

This highlights the algorithm. There are additional manipulations to prevent fish bowl effects,
adding textures to the walls, drawing floors and the sky, moving forward, backward, but the

rendering algorithm continues to use the above computations.

3 SYSTEM DESIGN AND COMPONENTS

31 SOFTWARE

The software runs a game loop, and once it renders the scene (creates the column data from the
geometry and state of the game) it waits until the display signal is in between frames (V_BLANK).
It uses a polling routine combined with a very short sleep interval to constantly check the status
of the frame.

Once the frame is completed, the column data is sent. Because of our triple buffering scheme,
this is not necessarily needed, though it does ensure that no frames are missed. The driver

(kernel module) interacts with the Avalon bus to transmit the data from software to hardware.

Separate threads handle usb input from the keyboard and controller to be read into the game
loop.

3.2 HARDWARE

The hardware is broken down into the main module, the vga module, the texture module, and the
column modules. The hardware, which we refer to as the column decoder, gets written to

through the Avalon bus by way of the software driver.

It also accepts commands for text display and blacking out the screen (not showing the rendered
scene).

l Phase 1

e
—’ |
I

/ \

—

i
'
i
I
= = |
'
-4’ SR - |
.. 1
'
NES Controller |
_________________________________ [E RS N
Textures arra 1
(EXfures array, I
'
'
I
'
|
I
I
'
|
I
'
1
i

s l hardware
SystemMerilog

1

1

4

1

1

1

1

1

1

1
—

VGA GAME
WORLD
MODULE

CTTTTITIT

1 Keyboard

SRAM BANKS -
o

% VGA Monitor

yvvvvy

Column tunle arrav Shadow column tuple array

4 HARDWARE

41 COLUMN DECODER & RENDERER

411 Design Assumptions

e 64 unit wall height
e 64 unit “block size”

e 1 pixel column width

41.2 Column Data

For each pixel, we grab the column tuple in SRAM corresponding to the row. Then we calculate if
the pixel is in the ceiling, wall, or floor. Floors and ceiling are hard coded with some RGB value

and also incorporate a subtle gradient for a pleasing effect.

If the pixel is contained in a wall, we will need to calculate the “relative” or perspective adjusted
row of the wall we are so that we can grab the appropriate RGB values from the texture, also in
SRAM.

The column tuple is encoded as 74 bits:

e Top of wall [16 bits signed]: what row the ceiling ends and wall starts. Can be a negative
number if the top is higher than the top of the screen (row 0)

e Projection wall height [16]: how many rows of pixels for the wall starting with the above
value. Can be larger than the amount of rows on screen if the wall is zoomed in.

e Wall side [1]: a single bit to say if the wall is along the x or y axis on the map. Using this
data you can darken or lighten the wall to create a subtle lighting effect

e Texture type [3]: select one of 8 different textures

e Texture offset [6]: 0-63 in terms of what column of the block you are currently working
with. This is critical for mapping pixels to textures.

e Scaling factor [32] Special bit shifted number to indicate the relative pixel position with
respect to the 64 pixel texture. We simulate floating point by creating a large number, bit
shifted left, by 21 positions. In the hardware, we perform the multiplication, then right shift
the 21 positions to correct.!

Because we make use of the basic Avalon bus, we limit ourselves to 16 bits of transfer, requiring
five separate consecutive write steps in order to write one column. This is then repeated 640

times until one of the write buffers is filled. Such a scheme does necessitate which “substep” of

' Technique suggested by Prof Edwards.

the writing process we are currently on. We found this small extra complexity preferable to using

640*5 different write locations to indicate which data we are receiving.

As the hardware requires the data to come in sequentially, it introduces some brittleness to the
design, but we have not observed any issues in practice. Nonetheless, we do add a column reset
register to the hardware in order to ensure we start the software with the hardware expecting

column data piece 1 of column 1.

4.1.3 Six Stage Pixel Pipeline

We are constantly calculating information for pixels ahead of the one currently being displayed.

Our VGA module runs at half speed so we can perform the work of two clocks for every pixel
displayed. We start by determining (i.e. row and column) the pixel, three pixels in the future, will
be. This is trivial when you are in the middle of a particular row, but can become tricky when you
are towards the end of a row, or the end of the last row as well. We have special logic to deal with

this in the verilog code.

Once this is determined, we fetch the column data for the pixel in question. We then wait two
cycles for the column data to arrive.

In stage 4 of the pipeline, we perform the calculation to determine which texture data we require.
The register in the texture module is changed and we then wait 2 cycles (due to double barrel

design) to get the correct texture information in the form of RGB values.

By stage six we have the rgb values ready at our disposal and set the VGA output values as
necessary. These values will be the same every two cycles and the picture is properly displayed.

When we are dealing with ceiling or floor pixels, the texture data is effectively garbage from the
prior time it was retrieved and is discarded.

4.1.4 Triple Buffering

Although not necessary, it was an interesting experiment to have our data writing scheme be
asynchronous. The software does not necessarily need to wait for the time in-between frames to
change the column data. We have a total of 3 separate column buffers which hold the 640
columns of data that make up one frame. At any given time, one is being read from (front buffer),
and the other two can trade off being written to (back buffers)®. At the end of every frame, the
module asks “which column buffer has the freshest, and fully written column data”.

This scheme ensures:

1. Column data can be written to at any time (asynchronous)

2 https://www.anandtech.com/show/2794/2

2. There are no changes to column data mid frame which would lead to screen tearing

3. We always display the most recent frame

If there was only one back buffer, and we wanted to ensure that we never read from a buffer
which was in the midst of being written to, there is a scenario where frames are skipped for an
arbitrary amount of time, if the column data came in only partially in between frames. Exceedingly

unlikely, but making the design correct is important nonetheless.

4.1.5 Scaling Factors - Several Approaches

Initially, it was thought that there could only be 480 (number of screen rows) possible scaling

factors since the main changing variable in the formula was the projected wall height. We came
up with a dictionary lookup table to find the preset scaling factors. However it was later realized
that there were far many more possible values, and it was determined that it would be better to

transmit the scaling factor precalculated as columnar data.

4.1.6 Array Storage and Retrieval - Double Barrel Design

The Perils of Memory Inference

module twoport3(
input logic clk,
input logic [8:0] aa, ab,
input logic [19:0] da, db,
input logic wa, wb,
output logic [19:0] ga, gb);

Finally!

Took this structure from a template:
Edit—Insert Template—Verilog HDL—Full
Designs—RAMs and ROMs—True Dual-Port

logic [19:0] mem [511:0]; RAM (single clock)

always_ff @(posedge clk) begin = -
if (Wﬂ) beg:i.n DATACUT 19] et ga[19..0]
mem[aa] <= da; PoRTECATACUTI
ga <= da; ahfd 18,0
end else gqa <= mem[aa]; Aﬁ_qu_m
end dafta.o) [ATAIN12. 0]
dof19.0]]
always_ff @(posedge clk) begin =480 D—p— 20
mem[ab] <= db; =00 D—p— -
gb <= db; v Jue
end else gb <= mem[ab];
end
endmodule

We utilized the blueprint from Professor Edwards’ memory lecture (above) to create a double
barrel memory design. Anecdotally, with the incorrect design initially attempted, our compilation
failed because we used up all the SRAM blocks. This is because the compiler incorrectly blew up

the design just like the lecture said it would.

3 http://www.cs.columbia.edu/~sedwards/classes/2022/4840-spring/memory.pdf

For the texture data, we made use of the readmembh function in verilog to read in thousands of
hex values for the registers, creating essentially a lookup table. Because the data was fixed, it

made sense to do it this way.

4.2 TILE-BASED CHARACTER RENDERER

4.2.1 General Principles

The character renderer piece of the hardware will render a white monospace character overlayed
on top of the rest of the output. It operates by accepting the first 128 ASCII characters and
specifying which position they are on the 80x30 tile grid on the screen. It can specify whether the

character should be white on a transparent background, or vice versa.

4.2.2 Two Stage Pixel Pipeline

Similar, yet simpler than the column decoding functions, we accomplish our computation in all but

2 clock cycles.

We need four pieces of data, and we aim to find this out for the next pixel: character column,
column offset, character row, and row offset. Offset is the exact pixel within a row or column.

The offsets are calculated by low bit count registers that simply wrap around and reset to zero
after being incremented so many times. The characters are 8x16 thus are sized perfectly for such

a technique.

We then ask the character module to fetch the yes/no value at that exact location, which takes
only 1 cycle due to the simpler design of the module vs the columns module.

When we display the data with the vga pins, we give preference to the character data, ifitis in a
“yes” position, we write a white rgb value to the wires. We did not implement different text colors,
though this would be trivial.

4.2.3 Font Data Storage and Retrieval

Likewise we employ the use of the readmembh function in verilog to load the font data initially.
The font data was obtained from the C array in lab two®. There is also the requirement of storing
30x80 different character values at the different row/col positions. This can be specified by the

driver speaking over the Avalon bus.

Between the column, row, character, and background color: writing any character requires 20
total bits. Once again we write in two separate stages, though in this case we do create discrete

* http://www.cs.columbia.edu/~sedwards/classes/2022/4840-spring/lab2 tar.gz

write locations for the two. Any time the second write stage is written to, the value is

automatically updated in the character module.

We use an assign statement in the character module to save one cycle for the retrieval step. Why
this works with the simpler design and not the more complex and bit-heavy columns module
design is an open question.

An aside: to set the character to a blank value, we chose the natural state of “space” to represent
this since no special codes were necessary. Indeed, the array is set to all spaces in the verilog file

for the initial startup of the hardware.

5 SOFTWARE

5.1 Game Loop

After the lookup tables for trigonometry are initially filled in; hardware, driver, thread elements are
set up, the main function starts running a continuous “game loop”. The loop simply examines the
player’s current position in the selected map, checks if the position needs to change, and

ensures that the player is not running into a wall. Then it calls the render function.

The main loop can also decide, based on the current state of the game, to call the initial menu
select, pause menu (a variation of menu select), or finish the game with a special message.

5.2 Renderer

The render routine, when called, will go through each column of the screen, marching rays out
from the viewer's field of view, and calculate all relevant column data.

We separate the calculation of column data from the sending of column data for timing purposes.
We want the sending of data to happen extremely quickly. Therefore, the column data is stored in

a struct, columns_t.

The renderer then polls the hardware about its frame status, waiting for when it is in the VBLANK
in between frame status, and then sends a pointer to the columns struct to the driver to be sent

off to hardware land.

Because of our semi-modern ARM cpu, the rendering loop happens extremely quickly, allowing
60 frames per second to easily be achieved.

5.3 Pause Menu, Finish Game

The pause menu takes advantage of our tile character renderer, showing the available maze
choices. The USB controller or keyboard navigates up or down the menu, and the currently
selected maze is indicated by the white background text. The start button on the controller or the

enter key on the keyboard will exit the menu and start the selected level.

The pause menu is a variation of this, with the addition of saving the current grid position and
angle of the player should they decide to return to the currently selected maze being played.

5.4 Timing With VBLANK

As we previously alluded to, the render function makes a series of ioctl calls to the driver,
checking for vblank status. It sleeps for 50 microseconds then checks again. The polling design is

simple, but less efficient than the more complex interrupt-based method.

Only after the renderer gets the go-ahead that the display output is in between frames - whether
that be the front or back porch, it sends out the column data to the driver. The driver handles the
rest.

5.5 Maps / Maze

The maze_t struct includes width, height, area (for bypassing the constant multiplication), name,
and the maze itself as described by an array of shorts. In retrospect, the maze could have been

type uint_8* for more space savings.

Each maze is simply an array of numbers 0-8. O indicates the absence of a wall (walkable floor
area) and 1-8 are the different wall textures. For extra readability, the numbers are changed to
defines of single capital letters corresponding to abbreviations:

#define B 1 // bluestone
#define C 2 // colorstone
#define E 3 // eagle (end level)
#define G 4 // greystone
#define M 5 // mossy

#define P 6 // purplestone
#define R 7 // redbrick

#define W 8 // wood

t#tdefine 0 @ // opening (floor)

typedef struct {

int width;

int height;

int area;

char name[20];

short map[1296]; //make this largest area of any map
} maze_t;

5.6 USB Interface & Threads

The keyboard functionality was largely modeled after the skeleton code in lab 2. The code
operates in a separate thread, checking for changes in the key state array. Global variables are
modified which ultimately are read by the game loop.

Likewise, the controller exists on its own thread as well. Some trial and error was required to find
out the precise values of different buttons at-rest and depressed.

The game loop examines both inputs and decides what move, if any, is happening, at any given
time.

6 HARDWARE-SOFTWARE INTERFACE

6.1 General Principles

The driver to communicate with the hardware is modeled from the skeleton files provided with

lab three®. The drivers provides several overarching functions:

e Reset columns

e Send columns data
e Blackout screen

e Un-blackout screen
e Set char at position

e Get vblank state

All but the last are write operations, while the last is a read operation, returning simply a true or

false (1 or 0) value.

6.2 Send Columns & Timing

® http://www.cs.columbia.edu/~sedwards/classes/2022/4840-spring/lab3-sw.tar.gz

The driver is responsible for copying over the columns data from the pointer in userland. Once it
has the data, it runs a loop for each column, splitting the data into its five separate parts based on
our specification. It combines certain data through the use of bit shifting and bitwise OR
operations.

For each of the five prepared parts of the data, it sends it sequentially. The order greatly matters,
as they are all going to the same memory location. The hardware is set to accept the data in this

particular order and keeps track of where it is in the data receiving process.

There is no handshake negotiation process going on, so the transmission is not robust. In the
future, it would be wise to have a kind of confirmation sent back.

The scaling factor is calculated in driver land, and its design is sub optimal. This should be moved
over to userland in a future iteration for good practices. Drivers should do as little calculations as
possible.

6.3 Tile Based Character Rendering

A paired-down version of the above method is employed for character writing inside the driver.
The driver shifts bit values as appropriate to match the expected format inside the hardware.
Only two write steps are necessary due to the smaller data size. Each of these steps has its own
convenient memory address to write to based on the hardware design spec, making the process

even simpler.

6.4 Register Map

Op Register DTS D7 D6 D5 D4 D3 D2 D1 DO

RO 0x00 READ VBLANK

READ R1 0x01 RESERVED
RO 0x00 WRITE COLNUM RESET
R1 0x01 RESERVED
R2 0x02 TEXTURE TYPE TEXTURE OFFSET
R3 0x03 TEXTURE TYPE MSB
R2 0x02 WALL HEIGHT LSB
R3 0x03 WALL HEIGHT MSB

WRITE R2 0x02 SCALING FACTOR LSB
R3 0x03 SCALING FACTOR MSB
R4 0x04 TEXT CHARACTER
R5 0x05 RESERVED
R6 0x06 CHAR COL TILE LSB CHAR TILE ROW
R7 0x07 RESERVED CHAR TILE HIGHLIGHT CHAR COL TILE MSB
R8 0x08 RESERVED WRITE BLACKOUT
R8 0X08 RESERVED CLEAR BLACKOUT

7 RESOURCE BUDGET

71 RESOURCE TABLE

In memory objects that we keep inside the very fast SRAM and avoid using DRAM.

Name

Description

Size

Num Elements

Column Tuple

top_of_wall (16
signed),
projected_height (16),
wall_side (1),
texture_offset (6),
texture_type (3),
scaling_factor(32)

74 bits

640 *3 (3
buffers)

Texture

64x64 array of RGB
values (alpha
assumed to be 1)

64 * 64 * 3 bytes (12.288kb)
each

Character Font

16x8 array of single
bits representing
white or transparent
for each ASCII
character

128 bits

128

Character Tile Data

Array of characters at
each row / column

7 bits

30*80

Based on the above, our SRAM memory needs are modest, coming in at 98.3kb for textures +

17.3kb for column tuples, and 2kb for all character font data, and another 2kb for character tile

data.

7.2 GRAPHICS

For texturing we are using the freely provided wolfenstein .png files available at
https://lodev.org/cgtutor/files/wolftex.zip. Here they are in all their 64x64 glory:

https://lodev.org/cgtutor/files/wolftex.zip

The popular ImageMagick library was used to output the files in a series of RGB values. With
some light massaging using grep, awk, etc - we were able to get the texture values as one long

file of hex values representing the memory state of the texture module in the hardware.

The floor was rendered as a static shade of gray, taking inspiration from a past project and the
original Wolfenstein game.

The “ceiling” was rendered as a blue tone which had a nice gradient effect where it faded to
white as the rows went down the screen. It was a simple effect to implement but added a
liveliness to the final result.

8 MILESTONES

All milestones set forth in the design document were achieved. They are left for posterity.

841 Milestone 1

Software rendering prototype which writes data to framebuffer. Key design consideration to split
up the raycasting loop and column renderer. The column renderer will be what becomes our
hardware.

8.2 Milestone 2

Initial hardware implementation in Verilog. Loading of textures into FPGA as initial contents of
ROM block using MIF (memory initialization files) in Quartus.®

Column decoding and display only at this milestone (untextured).

8.3 Milestone 3

Texturing in hardware. Basic gamification of maze’s. Multiple levels. Game completion screen.

® https://edstem.org/us/courses/17891/discussion/1332039

9 PLAYER INPUT

SELECT START

FPGA Raycasting uses libusb to receive and decode button presses from a USB HID NES
Controller.

We also allow the control from the keyboard simultaneously to allow for maximum flexibility.

If neither are plugged in, the program swiftly exits with an error message.

10 RESULTS

Largely, we were able to achieve all the goals set forth in the design document. We have a
smooth, 60fps, perfectly timed, textured output running through wolfenstein-like levels. We have
a tile based text rendering system that is used to communicate game state to the player. For the

time budget of this project the goals achieved were reasonable and substantial.

11 LESSONS LEARNED

The greatest lesson learned was that unlike software, hardware can be doing many things at
once. It is a completely different paradigm. Initially, this seems like a weakness, but it can be

exploited as an enormous strength.

A great limitation however, is how much can be done in one clock cycle. Similarly, one cannot
share the results of multiple parallel operations until the next cycle.

This leads to the obvious necessity of pipelining. It can be challenging to get a grip on this

concept but once understood, the sky is truly the limit.

That being said, our project was very amenable to pipelining. There may be other algorithms that
do not admit a parallel-like solution so easily.

This is a classic case of, “the more you know, the more you realize how much you do not know”.
Therefore we will refrain from extending our lessons too far; there is much to learn in this field,
and this is just the initial exposure.

Another lesson we can derive is the importance of heeding the Professor’s advice and creating a
simulation setup in Verilator for timing issues. Our approach was always trial and error when it
came to timing issues, and in the end, it slowed us down. Some time invested in the beginning

would have saved us much troubleshooting time later on.

12 GROUP MEMBER CONTRIBUTIONS

121 Adam

e Port initial Java demo code to create software mockup
e Create column decoder hardware

e Implement tile based text renderer

e Driver for software hardware interface

e Testing and bug fixing

12.2 Souryadeep

e USB controller work

e Develop parallel unused implementation of text tile renderer
e Testing and bug fixing

e Timing and mutex considerations

e Software model for game start and level select logic

13 FUTURE WORK

13.1 Floor / Ceiling Texturing

There exists a technique to cast additional rays towards the floor and ceiling in order to perform a
similar effect in terms of texturing these surfaces. This would require an entire reworking of the

architecture and is unlikely to be accomplished within the timeframe necessary.

13.2 Jumping

Of all the stretch goals, this seems like the most feasible, as it only requires the hardcoded
camera height to be adjusted in software - as far as the hardware is concerned, it is still decoding

the same data. Making jumping have a raison d'étre is another matter entirely.

Update: This was implemented for demonstration purposes, but it has no value in terms of
gameplay. A simple way to make this meaningful would be to have “pits” where the floor needs
to be jumped over. This would require 1241 to put into action, however.

13.3 Music / Sound Effects

Incorporation of an FM synthesis chip (off-the-shelf design) and hardcode some primitive sound
effects.

13.4 On Screen Elements and Enemies

This could be accomplished with some kind of sprite scaling technique. Though the original
Wolfenstein ran on computers that lacked any kind of sprite hardware.

14 CODE LISTING
141 Hardware
(not shown textures.mem and font.mem)

1411 column.decoder.sv

* Avalon memory-mapped peripheral that generates VGA signal from
* column data in ray casting context.

* Adam Carpentieri AC4409
Columbia University

*

*/

module column_decoder(input logic clk,

input logic reset,
input logic write,
input chipselect,

input logic [3:0] address,

input logic [15:0] writedata,
output logic [15:0] readdata,

output logic [7:0] VGA R, VGA G, VGA B,

output logic VGA CLK, VGA HS, VGA VS,
VGA_BLANK_ n,
output logic VGA_SYNC_n);

logic [10:0] hcount;

logic [9:0] vcount, vcount_1 ahead;

logic [2:0] cur_col write stage = 3'h9; //which of 3 write stages
per column

logic [1:0] col module_index_to read = 2'b00; //which columns
module to read

logic [1:0] col module_index_to write = 2'b01; //which columns
module to write to

logic [2:0] col write = 3'bO;

logic new_columns_ready = 1'b0;

logic [9:0] cur_col first _write_stage data;

logic [15:9] cur_col second write stage data;

logic [15:0] cur_col third write_stage_data;

logic [15:9] cur_col fourth_write stage data;

logic [9:0] colnum [2:0];
logic [41:0] new_coldata [2:0];
logic [41:0] col data [2:0];
logic [31:0] new_sfdata[2:0];
logic [31:0] sf_data [2:9];

logic [2:0] texture_type select = 1'bo;
logic [5:0] texture_row_select = 6'b@;
logic [5:0] texture_col select = 6'bO;
logic [23:0] cur_texture_rgb vals = {8'hff, 8'hff, 8'hff}; //output

logic [2:0] pixel_type = 3'bO; //0: ceiling, 1: wall, 2: floor
logic pixel wall dir = 1'bO;

logic [2:0] next_pixel type = 3'b@; //0: ceiling, 1: wall, 2: floor
logic next_pixel wall dir = 1'bo;
logic [23:0] next_pixel;

logic blackout_screen = 1'bo;

logic freeze_pipeline
vga_blank_n)

1'b0; //freeze the pixel pipeline (during

//character generator state

logic [4:0] char_write_row;

logic [6:0] char_write_col;

logic [7:0] char_write_char;
logic char_write_highlight;
logic char_write = 1'b0;

logic [4:0] char_cur_row = 5'ho;
logic [3:0] char_cur_row_offset = 4'ho;
logic [6:0] char_cur_col = 7'ho;
logic [2:0] char_cur_col offset = 3'he@;

logic char_on = 1'b@;

columns columns® (clk, reset, col write[@], colnum[@], new sfdata[@],
new_coldata[@], sf_data[@], col data[@]),

columnsl (clk, reset, col write[1], colnum[1l], new sfdata[1],
new_coldata[1], sf_data[l], col data[1l]),

columns2 (clk, reset, col write[2], colnum[2], new sfdata[2],
new_coldata[2], sf_data[2], col data[2]);

textures textures® (texture_type select,
texture row_select,
texture_col select,
cur_texture_rgb vals

)s
vga_counters counters (.clk50(clk), .*);
chars charse (.*);
always ff @(posedge clk) begin
if (reset) begin
{colnum[@], colnum[1l], colnum[2]} <= 30'h@;
cur_col write_stage <= 3'ho;

col module_index to read <= 2'b009;
col module index to write <= 2'b01;

col write <= 3'b0;
end else if (chipselect && write) begin

//reset col num
if(address == 4'h@) begin
cur_col write stage <= 3'ho;
col write[col module index to write] <= 1'ho;
colnum[col module_index_ to write] <= 10'b0;
end

else if(address == 4'hl) begin

//1st write stage
if(!cur_col write stage) begin

cur_col first write_stage data <= writedata[9:0];
col write <= 3'b0;
cur_col write stage <= cur_col write_stage + 3'hl;

//second write stage

end else if(cur_col write_stage == 3'hl) begin
cur_col second write stage data <= writedata;
cur_col write_stage <= cur_col write_stage + 3'hil;

//third write stage

end else if(cur_col write stage == 3'h2) begin
cur_col _third _write_stage data <= writedata;
cur_col write stage <= cur_col write_stage + 3'hl;

//fourth write stage

end else if(cur_col write_stage == 3'h3) begin
cur_col fourth write stage data <= writedata;
cur_col write_stage <= cur_col write_stage + 3'hil;

//fourth write stage
end else begin

if(colnum[col module_index to write] == 10'h27F) begin
//639

col module_index_to_write <= 2'b11 *
col module_index_to write ~ col module index_ to_read;
colnum[2'bll ~ col module index to write *

col module index_to_read] <= 10'bo;
new_columns_ready <= 1'b1;
end
else
colnum[col module_index_to write] <=
colnum[col module index to write] + 10'bl; //increment col num

new_coldata[col module index_ to write] <=
{cur_col _third write_stage data, cur_col second write stage data,
cur_col first_write_stage data};

new_sfdata[col module_index_to write] <=
{cur_col_fourth_write_stage data, writedata};

col write[col module_index_to write] <= 1'hil;

cur_col write_stage <= 3'ho;

end
end

else if(address == 4'h2) begin
char_write_char <= writedata[7:0];
end

else if(address == 4'h3) begin
char_write row <= writedata[4:0];
char_write col <= writedata[11:5];
char_write_highlight <= writedata[12];
char_write <= 1'bl;

end

else if(address == 4'h4) begin
blackout_screen <= writedata[Q];
end

if(address != 4'h3)
char_write <= 1'b0;
end
else begin
col write <= 3'b0;
char_write <= 1'b0;
end

//pixel pipeline
// always ff @(posedge clk)

if(hcount == 11'h4ff) //1279 (639)
freeze pipeline <= 1'b1;

else if(hcount == 11'h638 && (vcount < 10'hle® || vcount ==

10'h20c)) //1591, 480, 524
freeze pipeline <= 1'b0O;

//pipeline stage 1 - retrieve column data
// always ff @(posedge clk)

if(!freeze pipeline)
colnum[col module index_ to read] <= hcount < 11'h500 //1280
(4f8) and 797(31d)
? hcount[10:1] + 10'h2
: hcount[10:1] - 10'h31d;

//(pipeline stage 2 and 3 is just waiting for column data)

//pipeline stage 4 - use column data to set texture registers
//always_ff @(posedge clk)

//ceil
if(vcount_1 ahead < col data[col module_index_to read][41:26] &&
Icol data[col module index to read][41]) //top of wall
pixel type <= 2'h@;

//floor
else if(vcount_1_ahead >
($signed(col data[col module index_to read][41:26]) +
col data[col module index_to read][25:10]))
pixel type <= 2'h2;

else begin //wall

pixel type <= 2'hl;
pixel wall dir <= col data[col module index to read][9];

texture_type select <= col_data[col module index_to_read][8:6];
texture_col select <= col data[col module index to_read][5:0];
texture _row select <= ((vcount_1 ahead -
$signed(col _data[col module index _to read][41:26])) *
st data[col module index to read]) >> 5'h19;
end

//pipeline stage 5 - pass the baton (introduce artificial delay for
timing - want on even cycles)
next_pixel type = pixel type;

if(pixel type == 2'hl) begin

next_pixel <= cur_texture_rgb vals;
next_pixel wall dir <= pixel wall dir;
end

//swap out column module to read from if new avail and in between
frames
//always ff @(posedge clk)

if(vcount == 10'h20b && new_columns_ready) begin // 523

new_columns_ready <= 1'b0;
col module_index_to_read <= 2'b1l1l ~ col_module_index_to_read *
col module_index_to write;
end

//char row
if(vcount >= 10'hle@) begin //480
char_cur_row <= 5'ho;
char_cur_row_offset <= 4'ho;
end else if(hcount[10:1] == 10'h280 && 'hcount[0@]) begin //640

char_cur_row_offset <= char_cur_row_offset + 4'hl;

if(char_cur_row_offset == 4'hf)
char_cur_row <= char_cur_row + 5'hl;
end

//char col
if(hcount[10:1] >= 10'h280) begin //640

char_cur_col <= 7'ho;
char_cur_col offset <= 3'ho;

end else if(hcount[10:1] < 10'h280 && 'hcount[@]) begin //640

char_cur_col_offset <= char_cur_col offset + 3'hl;

if(char_cur_col offset == 3'h7)
char_cur_col <= char_cur_col + 7'h1;
end

end
always_comb begin

//"pipeline" stage 6 (current clock)

vcount_1 ahead = hcount >= 11'h63e //1598
? (vcount > 10'hldf ? 10'h@ : vcount + 10'hl)
. vcount;

{VGA_R, VGA G, VGA B} = {8'ho, 8'ho, 8'ho};
if (VGA_BLANK_n) begin
if(!blackout_screen) begin

if(next_pixel type == 2'h@) //ceil
{VGA_R, VGA G, VGA B} = {(vcount[8:1] + 8'hee),
(vcount[8:1] + 8'he0), 8'hff};

else if(next_pixel type == 2'h2) //floor
{VGA_R, VGA G, VGA B} = {8'h40, 8'h40, 8'h40};

else if(!next_pixel wall dir) //wall faded
{VGA R, VGA G, VGA B} = {(next_pixel[23:16]>>1),
(next_pixel[15:8]>>1), (next pixel[7:0]>>1)};

else //wall full brightness
{VGA_R, VGA G, VGA B} = next_pixel;
end

//text character
if(char_on)
{VGA R, VGA G, VGA B} = {8'hff, 8'hff, 8'hff};
end

//for vblank detection
if(vcount > 10'hldf)
readdata = 16'h1l;
else
readdata = 16'ho;

end
endmodule

module columns(
input logic clk, reset, write,
input logic [9:0] col num,
input logic [31:0] new_sf_data,
input logic [41:0] new_col data,
output logic [31:0] sf_data,
output logic [41:0] col data

)

//declare array https://www.chipverify.com/verilog/verilog-arrays
logic [41:0] columns [639:0];
logic [31:0] sfs [639:0]; //scaling factors

integer 1i;

initial begin
for (i=10'h@; i<10'h280; i=i+10'hl) begin
columns[i] <= 42'bO;
sfs[i] <= 32'bo;
end
end

always ff @(posedge clk) begin
if(write) begin

columns[col num] <= new_col data;
col data <= new_col data;
end else
col data <= columns[col num];
end

always_ff @(posedge clk) begin
if(write) begin

sfs[col num] <= new_sf_data;
st data <= new_sf data;
end else
sf_data <= sfs[col_num];
end

endmodule

//types: @: bluestone, 1: colorstone, 2: eagle, 3: greystone,

purplestone, 6:

module textures(

redbrick, 7: wood

input logic [2:0] texture_type,
input logic [5:0] row,

input logic [5:0] col,

output logic [23:0] texture_data

)4

logic [23:0] textures [0:32767]; //texture type,

//https://projectf.io/posts/initialize-memory-in-verilog/

initial begin
//$display("Loading textures.");

$readmemh ("textures.mem", textures);

end

assign texture_data = textures[{texture_type,

endmodule

module chars(

input

input
input
input
input
input

input
input
input
input

output logic char_

)5

logic

logic
logic
logic
logic
logic

logic
logic
logic
logic

clk,

[4:
[6:
[7:

[4:
[3:
[6:
:0]

[2

0]
0]
0]

0]
0]
0]

char_write_row,
char_write col,
char_write_char,
char_write_highlight,
char_write,

char_cur_row,
char_cur_row_offset,
char_cur_col,
char_cur_col offset,

on

logic [7:0] char_data [0:2047];
logic [7:0] chars [2399:0];
chars_highlight [2399:0];

logic

row, col}];

4: mossy, 5:

row num, col num

logic [21:0] char_data_index;
logic [21:0] char_index_to_write = 22'b@;
logic char_write _now = 1'b@;

logic char_highlight to write;
logic [7:0] char_to_write;

logic char_highlight;
integer 1i;

initial begin
//$display("Loading font.");
$readmemh("font.mem", char _data);
end

initial begin
for (i=12'h@; i<12'h96@; i=i+12'hl) begin
chars[i] <= 8'h20@; //space
chars_highlight[i] <= 1'b0;
end
end

always_ff @(posedge clk) begin

if(char_write) begin
char_index_to write <= (char_write row * 11'h50) +
char_write col;
char_to_write <= char_write_ char;
char_highlight_to _write <= char_write_highlight;
char_write now <= 1'bil;
end

if(char_write_now) begin
chars[char_index _to_write] <= char_to write;
chars_highlight[char_index_to_write] <= char_write_highlight;
char_write now <= 1'b@;

end

//pipeline step 1

char_data_index <=
((chars[(char_cur_row * 12'h50) + char_cur_col]) * 12'h10)
+ char_cur_row_offset;

char_highlight <= chars_highlight[(char_cur_row * 12'h50) +
char_cur_col];
end

assign char_on = char_data[char_data_index[11:0]][char_cur_col offset]
- char_highlight;

endmodule

module vga_counters(

input logic clk50, reset,

output logic [10:0] hcount, // hcount[10:1] is pixel column
output logic [9:0] wvcount, // vcount[9:0] is pixel row

output logic VGA_CLK, VGA HS, VGA VS, VGA BLANK n, VGA SYNC n);
/*
* 640 X 480 VGA timing for a 50 MHz clock: one pixel every other cycle
*
* HCOUNT 1599 0o 1279 1599 ©
*
* | Video | | Video
*
k
* |SYNC| BP |<-- HACTIVE -->|FP|SYNC| BP |<-- HACTIVE
k
o VGA_HS |
WY
// Parameters for hcount
parameter HACTIVE = 11'd 1280,
HFRONT_PORCH = 11'd 32,
HSYNC = 11'd 192,
HBACK PORCH = 11'd 96,
HTOTAL = HACTIVE + HFRONT_PORCH + HSYNC +

HBACK_PORCH; // 1600

// Parameters for vcount

parameter VACTIVE = 10'd 480,
VFRONT_PORCH = 10'd 10,
VSYNC =10'd 2,
VBACK_PORCH = 10'd 33,
VTOTAL = VACTIVE + VFRONT_PORCH + VSYNC +

VBACK_PORCH; // 525

logic endOfLine;

always ff @(posedge clk50 or posedge reset)

if (reset) hcount <= ©;
else if (endOfLine) hcount <= ©;
else hcount <= hcount + 11'd 1;

assign endOfLine = hcount == HTOTAL - 1;
logic endOfField;

always_ff @(posedge clk50 or posedge reset)
if (reset) vcount <= 0;
else if (endOfLine)
if (endOfField) vcount <= 9;
else vcount <= vcount + 10'd 1;

assign endOfField = vcount == VTOTAL - 1;

// Horizontal sync: from ©x520 to Ox5DF (©x57F)
// 101 0010 0000 to 101 1101 1111
assign VGA HS = !((hcount[10:8] == 3'bl1l0l) &
I'(hcount[7:5] == 3'b111));
assign VGA VS = !(vcount[9:1] == (VACTIVE + VFRONT_PORCH) / 2);

assign VGA_SYNC_n = 1'b@; // For putting sync on the green signal;
unused

// Horizontal active: © to 1279 Vertical active: 0 to 479
// 101 0000 0000 1280 01 1110 0000 480
// 110 0011 1111 1599 10 0000 1100 524

assign VGA BLANK n = !(hcount[10] & (hcount[9] | hcount[8])) &
1'(vcount[9] | (vcount[8:5] == 4'b1111));

/* VGA_CLK is 25 MHz

clk50 I D I e

hcount[0] | |

*/
assign VGA_CLK = hcount[@]; // 25 MHz clock: rising edge sensitive

endmodule

14.2 Software

14.21 column_decoder.c

~
*

* Device driver for the Raycasting Column Decoder

A Platform device implemented using the misc subsystem

Stephen A. Edwards
Columbia University

Modified by Adam Carpentieri AC4409
Columbia University Spring 2022

References:

Linux source: Documentation/driver-model/platform.txt
drivers/misc/arm-charlcd.c

http://www.linuxforu.com/tag/linux-device-drivers/

http://free-electrons.com/docs/

"make" to build
insmod column_decoder.ko

Check code style with
checkpatch.pl --file --no-tree column_decoder.c

* K K X X X K K X X X K K X X X X ¥ X ¥

*/

#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of address.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/delay.h>
#include <asm/types.h>

#include "column_decoder.h"
#define DRIVER_NAME "column_decoder”

/* Device registers */

#define WRITE_COLNUM RESET(x) (x)
#define WRITE_COLS(x) ((x)+2)
#define WRITE_CHAR_S1(x) ((x)+4)
#define WRITE_CHAR_S2(x) ((x)+6)
#define WRITE_BLACKOUT(x) ((x)+8)
#tdefine READ_VBLANK(x) (x)

/*
* Information about our device
*/
struct column_decoder dev {
struct resource res; /* Resource: our register */
void _ iomem *virtbase; /* Where register can be accessed in memory
*/
columns_t *columns;
} dev;

//ensure the next write will be for the first column
static void reset_col num(void) {

iowrite8(0x00, WRITE_COLNUM RESET(dev.virtbase)); //value does not
matter

}

/*
* Write segments of a single digit
* Assumes digit is in range and the device information has been set up
*/
static void write_columns(columns_t *columns)
{
__ulé bits_to_send;
_ule i;
__u32 scaling factor;
column_arg t column_arg;

for(i=0; i<640; i++) {

column_arg = columns->column_args[i];

bits_to_send = 0x0000 | (column_arg.wall side << 9);

bits_to send |= (column_arg.texture_type << 6);

bits_to_send |= column_arg.texture_ offset;

iowritel6(bits_to send, WRITE_COLS(dev.virtbase));

iowritel6(column_arg.wall height, WRITE_COLS(dev.virtbase));

iowritel6(column_arg.top of wall, WRITE _COLS(dev.virtbase));

//TODO figure out why it needs to be multiplied by -1:
otherwise texture in hardware is upside down

scaling factor = column_arg.wall height ? (0x00000000 | ((64 <<
25) / column_arg.wall height)) * -1 : 0x00000000;

bits_to _send = (__ul6) ((scaling factor & OxFFFFO000) >> 16);
iowritel6(bits_to send, WRITE_COLS(dev.virtbase));

bits_to_send = (__ul6) (scaling_factor & Ox000OFFFF);

iowritel6(bits_to send, WRITE_COLS(dev.virtbase));

//TODO copy column data manually
//dev.columns = columns;

static void write_char(char_tile t *char_tile) {
__ule s2_val;
iowrite8(char_tile->char_val, WRITE_CHAR Si(dev.virtbase));
s2 val = (0x0000 | char_tile->highlight) << 12;
s2 val |= ((0x0000 | char_tile->col) << 5);
s2 val |= char_tile->row;
iowritel6(s2 val, WRITE _CHAR S2(dev.virtbase));

static void blackout_screen(void) {
iowritel6(0x0001, WRITE_BLACKOUT(dev.virtbase));

static void remove_blackout_ screen(void) {
iowritel6(0x0000, WRITE BLACKOUT(dev.virtbase));

static _ u8 read_vblank(void) {

return (__u8) ioreadl6(READ_VBLANK(dev.virtbase));

/*
* Handle ioctl() calls from userspace:
* Read or write the segments on single digits.
* Note extensive error checking of arguments
*/
static long column_decoder_ioctl(struct file *f, unsigned int cmd, unsigned
long arg)
{
columns_t columns;
char_tile t char_tile;
ug vblank val;

switch (cmd) {
case COLUMN_DECODER_RESET_COL_NUM:
reset _col num();
break;
case COLUMN_DECODER_WRITE_COLUMNS:
if (copy from_user(&columns, (columns_t *) arg,
sizeof(columns_t)))
return -EACCES;
write columns(&columns);
break;
case COLUMN_DECODER_WRITE_CHAR:
if (copy from_user(&char_tile, (char_tile t *) arg,

sizeof(char_tile t)))
return -EACCES;

write char(&char_tile);
break;
case COLUMN_DECODER_BLACKOUT_SCREEN:
blackout_screen();
break;

case COLUMN_DECODER_REMOVE_BLACKOUT_SCREEN:
remove_blackout screen();

break;
case COLUMN_DECODER_READ_VBLANK:
vblank _val = read_vblank();

if (copy_to_user((__u8 *) arg, &vblank val, sizeof(__u8)))
return -EACCES;

break;

default:
return -EINVAL;

return 0;

/* The operations our device knows how to do */

static const struct file operations column_decoder_ fops = {
.owner = THIS_MODULE,
.unlocked ioctl = column_decoder_ioctl,

}s
/* Information about our device for the "misc" framework -- like a char dev
*/
static struct miscdevice column_decoder misc device = {
.minor = MISC_DYNAMIC_MINOR,
.hame = DRIVER_NAME,

.fops &column_decoder_fops,

};

/*
* Initialization code: get resources (registers) and display
* a welcome message
*/
static int _ init column_decoder probe(struct platform device *pdev)

{
int ret;

/* Register ourselves as a misc device: creates /dev/column_decoder
*/
ret = misc_register(&column_decoder misc_device);

/* Get the address of our registers from the device tree */
ret = of_address_to resource(pdev->dev.of node, 0, &dev.res);
if (ret) {

ret = -ENOENT;

goto out_deregister;

/* Make sure we can use these registers */
if (request _mem_region(dev.res.start, resource_size(&dev.res),
DRIVER_NAME) == NULL) {
ret = -EBUSY;
goto out_deregister;

/* Arrange access to our registers */
dev.virtbase = of iomap(pdev->dev.of node, 9);
if (dev.virtbase == NULL) {

ret = -ENOMEM;

goto out_release_mem_region;

return 0;

out_release_mem_region:

release_mem_region(dev.res.start, resource_size(&dev.res));
out_deregister:

misc_deregister(&column_decoder_misc_device);

return ret;

/* Clean-up code: release resources */
static int column_decoder_remove(struct platform_device *pdev)
{
iounmap(dev.virtbase);
release_mem_region(dev.res.start, resource_size(&dev.res));
misc_deregister(&column_decoder_misc_device);
return 0;

/* Which "compatible" string(s) to search for in the Device Tree */
#ifdef CONFIG_OF
static const struct of_device_id column_decoder_of_match[] = {
{ .compatible = "csee4840,column_decoder-1.0" },
i}
¥
MODULE_DEVICE_TABLE(of, column_decoder_of match);
#endif

/* Information for registering ourselves as a "platform" driver */
static struct platform_driver column_decoder_driver = {

.driver = 4

.name = DRIVER NAME,

.owner = THIS_MODULE,

.of _match table = of match_ptr(column_decoder of match),
¥
.remove = exit p(column_decoder_remove),

};

/* Called when the module is loaded: set things up */
static int _ init column_decoder init(void)
{

pr_info(DRIVER_NAME ": init\n");

return platform _driver_probe(&column_decoder_driver,
column_decoder_probe);

}

/* Called when the module is unloaded: release resources */
static void _ exit column_decoder exit(void)

{

platform_driver_unregister(&column_decoder_driver);
pr_info(DRIVER_NAME ": exit\n");

module_init(column_decoder_init);

module_exit(column_decoder exit);
MODULE_LICENSE("GPL");

MODULE_AUTHOR("Adam Carpentieri, Columbia University");
MODULE_DESCRIPTION("Raycasting Column Decoder driver");

14.2.2 column_decoder.h

#ifndef _COLUMN_DECODER H
#define _COLUMN_DECODER_H

#include <linux/ioctl.h>
#include <asm/types.h>

typedef struct {
short top_of_wall; //signed
__u8 wall side;

__u8 texture_type;

__ul6e wall _height;
__u8 texture_offset;

} column_arg t;
typedef struct {
column_arg t column_args[640];
} columns_t;
typedef struct {

char char_val;

__u8 row;
__u8 col;

__u8 highlight;

} char_tile t;

#define COLUMN_DECODER_MAGIC 'q'

/* ioctls and their arguments */

#define COLUMN_DECODER_RESET_COL_NUM _IOW(COLUMN_DECODER_MAGIC, 1, _ u8)
#tdefine COLUMN DECODER WRITE COLUMNS IOW(COLUMN DECODER_MAGIC, 2,
columns_t *)

#tdefine COLUMN DECODER _WRITE CHAR _IOW(COLUMN_ DECODER_MAGIC, 3, char_tile t
*)

#tdefine COLUMN DECODER BLACKOUT SCREEN IOW(COLUMN DECODER_MAGIC, 4, _ u8)
#tdefine COLUMN_DECODER_ REMOVE_BLACKOUT_SCREEN _IOW(COLUMN_DECODER_MAGIC, 5,
__u8)

#define COLUMN_DECODER_READ_VBLANK _IOR(COLUMN_DECODER_MAGIC, 6, _ u8)

tendif

14.2.3 mazes.c

#include "mazes.h"

//types: B: bluestone, C: colorstone, E: eagle, G: greystone, M: mossy, P:
purplestone, R: redbrick, W: wood

maze_t mazes[3] = {
{ 12, 12, 144, "CESPR",
{
G,G,G,G,q,Gq,G,Gq,G,G,G,G,
G,0,0,0,0,0,0,0,0,0,0,G,
G,0,0,0,0,0,0,0,0,0,0,G,
G,0,0,0,0,0,0,0,C,0,0,G,
G,0,0,c,0,C,0,0,C,0,0,G,
G,0,0,c,0,C,C,0,C,0,0,G,
G,0,0,c,0,0,C,0,C,0,0,G,
G,0,0,0,C,0,C,0,C,C,C,G,
G,0,0,0,C,0,C,0,0,0,0,G,
G,0,0,0,C,C,c,C,C,0,0,G,
G,0,0,0,0,0,0,0,0,0,0,E,
G,G,G,G,q,G,G,G6,G,G,G,G

}s
{ 24, 24, 576, "MUDD",

{

R,
rR,0,0,0,0,0,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,R,
rR,0,0,0,0,0,0,0,0,0,0,0,0,0,o0,0,0,0,0,0,0,0,0,R,
rR,0,o0,0,0,0,0,0,0,0,0,0,W,0,W,W,W,W,W,W,0,0,0,R,
rR,0,0,0,0,Ww,0,0,0,0,Ww,0,Ww,o0,o0,0,0,0,0,W,0,0,0,R,
R,0,0,W,0,W,Ww,o0,Ww,o,Ww,o,w,o,o,0,0,0,0,W,0,0,0,R,
R,0,0,W,0,0,W,0,W,0,W,0,W,0,W,W,W,W,W,W,0,0,0,R,
rR,0,0,0,W,0,Ww,o0,Ww,o,w,o,w,o,w,o,o,o0,0,0,0,0,0,R,
R,0,0,0,W,0,W,0,W,0,W,0,W,0,W,0,W,W,W,W,W,W,W,R,
rR,0,0,0,W,0,Ww,o0,Ww,o,w,o,w,o,w,o,o,o0,0,0,0,0,0,R,
rR,0,0,0,W,0,Ww,o,w,o,w,o,w,o,o.,o,o,o.,o0,0,0,0,0,R,
R,0,0,0,W,0,W,0,W,0,W,0,W,0,W,W,W,W,W,W,0,W,W,R,
R,0O,W,o0,Ww,o,w,o,w,o,o,o,w,o,o.,o,o0,0,w,o0,0,0,0,R,
R,0,W,0,W,0,W,0,W,W,W,W,W,W,W,W,0,0,W,0,0,0,0,R,
R,0O,Ww,o,Ww,o,Ww,o,o,o0,o,o,o0,w,o0,w,o,0,w,o0,0,0,0,R,
R,0,W,0,W,0,0,W,W,W,W,W,W,W,0,W,0,0,W,0,0,0,0,R,
R,O,Ww,o,Ww,o0,0,Ww,0,0,0,0,0,0,0,W,0,0,W,W,W,W,W,R,
rR,0,0,0,Ww,o0,0,Ww,o0,o0,o0,o0,0,0,0,W,Ww,0,0,0,0,0,0,R,
rR,0,0,0,W,W,W,w,o0,0,0,Ww,0,0,0,0,0,R,0,0,0,0,0,R,
R,0O,Ww,o0,o0,o0,0,o0,0,0,0,Ww,0,0,0,W,0,Ww,0,0,0,0,0,E,
R,0O,W,o0,o0,0,0,0,0,0,0,Ww,0,0,0,W,0,Ww,0,0,0,0,0,R,
R,R

}s
{ 36, 36, 1296, "PUPIN",

B,8B,8.,8B,B,B,B,B,
B,0,0o0,0,0,0,0,0,o0,0,0,o0,0,0,0,0,0,0,0,0,o0,0,0,o0,0,0,0,0,0,0,0,0,0,0,0,B,
B,0,0o0,0,0,0,0,0,o0,0,0,o0,0,0,o0,0,0,0,0,0,o0,0,0,o0,0,0,0,0,0,0,0,0,0,0,0,B,
B,0,0o0,0,0,0,0,0,0,0,0,0,M,0,M,M,M,M,M,M,o0,0,0,0,0,0,M,M,M,M,M,M,M,M,0,B,
B,0,0,0,0,M,0,0,0,0,M,0,M,0,o0,0,0,0,0,M,0,0,0,0,0,0,M,0,0,o0,0,0,0,0,0,B,
B,0,0,M,0,M,M,0,M,0,M,0,M,o0,oO0,0,0,0,0,M,0,0,0,0,0,0,M,0,M,M,M,M,M,M,M,B,
B,0,0,M,0,0,M,0,M,0,M,0,M,0,M,M,M,M,M,M,oO,O0,0,0,0,0,M,0,0,o0,0,0,0,0,0,B,

B,0,0,0,M,0,M,0,M,0,M,0,M,0,M,0,0,0,0,0,0,0,0,0,0,0,M,0,0,0,0,0,0,0,0,B,

B,0,0,0,M,0,M,0,M,0,M,0,M,0,M,0,M,M,M,M,M,M,M,0,0,0,M,0,0,M,0,M,M,0,0,B,

B,0,0,0,M,0,M,0,M,0,M,0,M,0,M,0,0,o0,0,0,0,0,0,0,0,0,M,0,0,M,0,0,M,0,0,B,

B,0,0,0,M,0,M,0,M,0,M,0,M,o0,oO0,0,0,o0,0,0,o0,0,0,0,0,0,M,0,0,M,0,0,M,0,0,B,

B,0,0,0,M,0,M,0,M,0,M,0,M,0,M,M,M,M,M,M,0,M,M,M,M,M,M,0,0,M,0,0,M,0,0,B,

B,0O,M,0,M,0,M,0,M,0,0,0,M,0,o0,0,0,0,M,0,o0,0,0,0,0,0,M,0,0,M,0,0,M,0,0,B,

B,0,M,0,M,0,M,0,M,M,M,M,M,M,M,M,o0,O0,M,O0,oO0,0,0,0,0,0,M,0,0,M,0,0,M,0,0,B,

B,0O,M,0,M,0,M,o0,oO0,0,0,0,0,M,0,M,0,0,M,0,o0,0,0,0,0,0,M,0,0,M,0,0,M,0,0,B,

B,0,M,0,M,0,0,M,M,M,M,M,M,M,O,M,0,0,M,O0,oO0,0,0,0,0,0,M,0,0,M,0,0,M,0,0,B,

B,0O,M,0,M,0,0,M,o0,0,0,0,0,0,0,M,0,0,M,M,M,M,M,0,0,0,M,0,0,M,0,0,M,0,0,B,

B,0,0,0,M,0,0,M,o0,0,0,0,0,0,0,M,M,o0,0,0,0,0,0,0,0,0,M,0,0,0,M,0,M,0,0,B,

B,0,0,0,M,M,M,M,0,0,0,M,0,0,0,0,0,M,0,0,o0,0,0,0,0,0,M,0,0,0,M,0,M,0,0,B,

B,O,M,0,0,0,0,0,0,0,0,M,0,0,0,M,0,M,0,0,o0,0,0,0,0,0,M,0,0,0,M,0,M,M,M,B,

B,O,M,0,0,0,0,0,0,0,0,M,0,0,0,M,0,M,0,0,0,0,M,M,M,M,M,0,0,M,0,0,0,0,0,B,

B,M,M,O0,0,0,0,0,o0,0,0,o0,0,0,o0,0,0,0,0,0,0,0,M,0,0,0,0,0,0,M,0,0,0,0,0,B,

B,0,0,0,M,0,M,0,M,0,M,0,M,o0,oO0,0,0,o0,0,0,0,0,0,0,0,M,M,M,M,M,0,0,M,0,0,B,

B,0,0,0,M,0,M,0,M,0,M,0,M,0,M,M,M,M,M,M,O,M,M,0,O0,M,o0,0,0,0,0,0,M,0,0,B,

B,0O,M,0,M,0,M,0,M,0,0,0,M,0,o0,0,0,0,M,0,o0,0,0,o0,0,0,0,0,0,0,0,0,M,0,0,B,

B,0,M,0,M,0,M,0,M,M,M,M,M,M,M,M,O0,O0,M,O0,oO0,O0,0,o0,0,0,0,0,0,0,0,0,M,0,0,B,

B,0O,M,0,M,0,M,o0,oO0,0,0,0,0,M,0,M,0,0,M,0,0,0,0,0,0,M,M,M,M,M,M,M,M,M,M,B,

B,0,M,0,M,0,0,M,M,M,M,M,M,M,O,M,0,0,M,O0,oO0,0,0,0,0,M,0,0,0,0,0,0,0,0,0,B,

B,0O,M,0,M,0,0,M,0,0,0,0,0,0,0,M,0,0,0,M,M,M,M,M,M,M,oO,O0,O0,o0,0,0,0,0,0,B,

B,0,0,0,M,0,0,M,0,0,0,0,0,0,0,M,M,0,0,0,0,0,0,0,0,0,M,0,0,0,0,0,0,0,0,B,

B,0,0,0,M,M,M,M,0,0,0,M,0,0,0,0,0,M,0,0,0,0,0,0,0,0,0,0,M,M,M,0,0,0,0,B,

B,O,M,0,0,0,0,0,0,0,0,M,0,0,0,M,0,M,0,0,0,0,0,0,M,0,0,0,0,0,M,0,0,0,0,B,

B,0O,M,0,0,0,0,0,0,0,0,M,0,0,0,M,0,M,0,0,0,0,0,0,M,0,0,0,0,0,M,0,0,0,0,E,

B,8B,8.,8B,8,8,B8,B,B,B

}

};

14.2.4 mazes.h

#ifndef MAZES_H

#define NUM_MAZES 3

//textures

#define B 1 // bluestone
#tdefine C 2 // colorstone
#tdefine E 3 // eagle (end level)
#tdefine G 4 // greystone
#define M 5 // mossy

#tdefine P 6 // purplestone
#define R 7 // redbrick

#tdefine W 8 // wood

#define 0 © // opening (floor)

typedef struct {

int width;

int height;

int area;

char name[20];

short map[1296]; //make this largest area of any map
} maze_t;

#tendif

14.2.1 usb_devices.c

#tinclude "usbdevices.h"

#tinclude <stdio.h>
#tinclude <stdlib.h>
#tinclude <stdbool.h>

#define IDVENDOR 0x0079

/* References on libusb 1.0 and the USB HID/keyboard protocol
*

* http://libusb.org

*
http://www.dreamincode.net/forums/topic/148707-introduction-to-using-1libusb
-10/

* http://www.usb.org/developers/devclass_docs/HID1 11.pdf

* http://www.usb.org/developers/devclass_docs/Hutl 11.pdf

*/

/*
* Find and return a USB keyboard device or NULL if not found
* The argument con
*
*/
struct libusb_device_handle *openkeyboard(uint8 t *endpoint_address) {

libusb_device **devs;

struct libusb_device_handle *keyboard = NULL;
struct libusb_device descriptor desc;

ssize t num_devs, d;

uint8 t i, k;

/* Start the library */

if (libusb_init(NULL) < @) {
fprintf(stderr, "Error: libusb_init failed\n");
exit(1);

}

/* Enumerate all the attached USB devices */
if ((num_devs = libusb _get device list(NULL, &devs)) < @) {
fprintf(stderr, "Error: libusb_get device 1list failed\n");

exit(1);
}

/* Look at each device, remembering the first HID device that speaks
the keyboard protocol */

for (d =0 ; d < num_devs ; d++) {
libusb _device *dev = devs[d];
if (libusb_get device descriptor(dev, &desc) < 0) {
fprintf(stderr, "Error: libusb_get device descriptor failed\n");

exit(1);
}

if (desc.bDeviceClass == LIBUSB_CLASS_PER_INTERFACE) {

struct libusb_config descriptor *config;
libusb get config descriptor(dev, 0, &config);

for (i = 0@ ; i < config->bNumInterfaces ; i++)

for (k = @ ; k < config->interface[i].num_altsetting ; k++) {

const struct libusb_interface descriptor *inter =
config->interface[i].altsetting + k ;

if (inter->bInterfaceClass == LIBUSB_CLASS HID &&
inter->bInterfaceProtocol == USB_HID_ KEYBOARD_PROTOCOL) {

int r;
if ((r = libusb_open(dev, &keyboard)) != 0) {
fprintf(stderr, "Error: libusb_open failed: %d\n", r);

exit(1);
}

if (libusb_kernel driver_active(keyboard,i))
libusb_detach_kernel_driver(keyboard, i);

libusb_set _auto_detach_kernel driver(keyboard, i);

if ((r = libusb_claim_interface(keyboard, i)) != @) {

fprintf(stderr, "Error: libusb_claim_interface failed: %d\n",

r)s
exit(1);
}
*endpoint address = inter->endpoint[0].bEndpointAddress;
goto found;
¥
}
}
}
found:

libusb free device list(devs, 1);

return keyboard;

}

struct libusb device handle *opencontroller(uint8 t *endpoint_address) {

libusb_device **devs;

//struct libusb_device_handle *keyboard
struct libusb device handle *controller
struct libusb_device descriptor desc;
ssize t num_devs, d;

uint8 t i, k;

NULL;
NULL;

/* Start the library */

if (libusb_init(NULL) < @) {
fprintf(stderr, "Error: libusb_init failed\n");
exit(1);

}

/* Enumerate all the attached USB devices */

if ((num_devs = libusb _get device list(NULL, &devs)) < @) {
fprintf(stderr, "Error: libusb_get device 1list failed\n");
exit(1);

¥

/* Look at each device, remembering the first HID device that speaks
the keyboard protocol */

for (d = 0@ ; d < num_devs ; d++) {

libusb _device *dev = devs[d];

if (libusb_get_device descriptor(dev, &desc) < @) {
fprintf(stderr, "Error: libusb_get device descriptor failed\n");
exit(1);

}

* 1libusb class _code enum
* LIBUSB_CLASS PER_INTERFACE = 0x00
* others.. CLASS AUDIO, PRINTER, SECURITY, VIDEO...
* keyboard and controller: bDeviceClass 0 (Defined at
Interface level)
*/

/*temporary WA using the idVendor of device descriptor since keyboard
has an overlapping interface with controller*/

if (desc.bDeviceClass == LIBUSB_CLASS PER_INTERFACE && desc.idVendor ==
IDVENDOR) {

struct libusb_config descriptor *config;
libusb _get config descriptor(dev, 0, &config);

for (i = 0@ ; i < config->bNumInterfaces ; i++)
for (k =0 ; k < config->interface[i].num_altsetting ; k++) {

/* libusb_interface pointer array is part of the config_descriptor
struct
* there are bNumInterfaces # of these libusb_interface pointers
* altsetting is a pointer to libusb_interface_descriptor. there is
an array of them in libusb_interface struct
**/
const struct libusb_interface_descriptor *inter =
config->interface[i].altsetting + k ;

/*
* keyboard:
* bInterfaceClass 3 Human Interface Device
* bInterfaceSubClass 1 Boot Interface Subclass
* bInterfaceProtocol 1 Keyboard
*
*
* controller:
* bInterfaceClass 3 Human Interface Device

* bInterfaceSubClass © No Subclass
* bInterfaceProtocol © None

*

* LIBUSB CLAS HID = 3

* USB_HID KEYBOARD_PROTOCOL = 1

* USB_HID CONTROLLER_ PROTOCOL = ©

**/

if (inter->bInterfaceClass == LIBUSB_CLASS HID &&
inter->bInterfaceSubClass == 0 &&
inter->bInterfaceProtocol == USB_HID CONTROLLER_PROTOCOL) {

int r;

if ((r = libusb_open(dev, &controller)) != 0) {
fprintf(stderr, "Error: libusb_open failed: %d\n", r);
exit(1);

}

if (libusb_kernel _driver_active(controller,i))
libusb_detach_kernel driver(controller, i);

libusb_set_auto_detach _kernel driver(controller, 1i);

if ((r = libusb_claim_interface(controller, i)) != 0) {
fprintf(stderr, "Error: libusb_claim_interface failed:
%d\n", r);
exit(1);
}

*endpoint_address = inter->endpoint[@].bEndpointAddress;
goto found;

//this is required when you are done with the devices. but make sure not
to unreference the device you are about to open before actually opening it
found:
libusb_free device list(devs, 1);

//return keyboard;
return controller;

char get_char_from_keystate(struct usb_keyboard packet *packet) {

uint8_ t keycode
uint8 t modifiers =

char ascii_char;

= get last keycode(packet->keycode);
packet->modifiers;

bool shift pressed = modifiers & USB_LSHIFT || modifiers &

USB_RSHIFT;

char no_shift _chars[] = {

‘\e', '\e', '\e', "\e', 'a', 'b', 'c', 'd', 'e', 'f',
‘g, 'h*, 'i', '3, 'k, '1', 'm', 'n', ‘o', 'p',
'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
', '2', '3', '4', '5', '¢', '7', '8', '9', '0Q',
"\e', "\e', "\e', "\e', " ‘', '-', '=', "[', "1, "\\',
\Ne', 5, '\, T, NN R, T/, T\et, T\et, '\eY,
"\e', "\e', "\e', '\e', '\o', '\o', '\o', '\o', '\o', '\o',
"\e', "\e', "\e', "\e', '\e', '\e', '\e', '\eo', '\o', '\o’',
N, NE, NWET, NEN T Ty e T e, L
'2', '3', '4', '5', '¢', '7', '8', '9', 'e', '.',
'\e', '\e@', '\o', '='

¥

char shift_chars[] = {
'\e', '\e', "'\o', '\e', 'A‘, 'B', 'C', 'D', 'E', 'F',
'¢', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S*', ‘'T', 'U'y, 'v', '"W', 'X', 'y', 'z',
Ill) '@IJ '#l: '$I: I%IJ 'A'J l&lJ l*lJ l('J |)')
"\e', '\@', '\e', '\o', " ', "', '+, "{', "}, |,
"\, "', "M, sttty ', ", '\et, '\e', '\e',
‘\e', "\e', "\e', '\e', '\o', '\oe', '\o', '\o', '\o', '\o',
"\e', "\e', "\e', "\e', '\e', '\e', '\e', '\o', '\o', '\o’',
N, N, NWE . NE T Ty e T, E L
'\e', '"\e', '\e', '5', '\e', '\e', '\e', '\e', '\e', '\o',
‘\e', '\e', '\o', '='

};

ascii_char =

keycode >= @x67 ? '\o'
shift_pressed ? shift_chars[keycode]

: no_shift_chars[keycode];

return ascii_char;

bool is_controller_key pressed(int x, uint8 t key, uint8 t keycode[6]) {

if(keycode[x] == key)
return true;

return false;

bool is_key pressed(uint8_ t key, uint8 t keycode[6]) {

if(!*keycode)
return 0;

for(int i=0; i<6; i++) {
if(keycode[i] == key)
return true;

return false;

char get gameplay_ key(uint8 t keycode) {
switch(keycode) {

case Ox4F:
return 'R';

case 0x50:
return 'L';

case 0Ox51:
return 'D';

case 0x52:
return 'U';

return '\0';

int get last keycode pos(uint8 t keycode[6]) {

if(!*keycode)
return 0;

for(int i=1; i<6; i++) {
if(!keycode[i])
return i-1;

return 5;

uint8 t get last keycode(uint8 t keycode[6]) {

if(!*keycode)
return 0;

uint8_t last_keycode = keycode[@];
for(int i=1; i<6; i++) {

if(!keycode[i])
return last_keycode;

last _keycode = keycode[i];

return last_keycode;

14.2.1 usb_devices.h

#ifndef _USBDEVICES H
#define _USBDEVICES H

#include <libusb-1.0/1ibusb.h>
#tinclude <stdbool.h>

#define USB_HID_ KEYBOARD PROTOCOL 1
#define USB_HID_CONTROLLER_PROTOCOL ©

/* Modifier bits */

#define USB_LCTRL (1 << 0)
#define USB_LSHIFT (1 << 1)
#define USB_LALT (1 << 2)
#define USB_LGUI (1 << 3)
#define USB_RCTRL (1 << 4)
#define USB_RSHIFT (1 << 5)
#define USB_RALT (1 << 6)
#define USB_RGUI (1 << 7)

struct usb_keyboard_packet {
uint8_t modifiers;
uint8_t reserved;
uint8_t keycode[6];

}s

/* Find and open a USB keyboard device. Argument should point to
space to store an endpoint address. Returns NULL if no keyboard
device was found. */

extern struct libusb device handle *openkeyboard(uint8 t *);

extern struct libusb device handle *opencontroller(uint8 t *);

extern char get_char_from_keystate(struct usb_keyboard packet *);
extern char get gameplay key(uint8 t);

extern bool is_key pressed(uint8_ t, uint8 _t[6]);

extern bool is_controller key pressed(int, uint8 t, uint8 t[6]);

extern uint8 t get last keycode(uint8 t[6]);
extern int get last_keycode pos(uint8 t[6]);

ttendif

14.2 1 raycaster.c

/*
Adapted from https://permadi.com/activity/ray-casting-game-engine-demo/

2022 Adam Carpentieri (ac4409@columbia.edu) and Souryadeep Sen
(ss6400@columbia.edu)
*/

#include "column_decoder.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "usbdevices.h"
#include "mazes.h"
#include <pthread.h>
#include <stdbool.h>
#include <math.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdint.h>

// size of tile (wall height) - best to make some power of 2
#tdefine TILE SIZE 64
#define WALL_HEIGHT 64

//do not change - hardware precisely calibrated for these values - will
crash system otherwise

#define PROJECTIONPLANEWIDTH 640

#define PROJECTIONPLANEHEIGHT 480

#define ANGLE6@ PROJECTIONPLANEWIDTH
#define ANGLE3@ (ANGLE60/2)

#define ANGLE15 (ANGLE3@/2)

#define ANGLE9® (ANGLE30*3)

#define ANGLE180 (ANGLE9©*2)

#define ANGLE270 (ANGLE9©*3)

#define ANGLE360 (ANGLE60*6)

#define ANGLEO ©

#define ANGLE5 (ANGLE30/6)

#define ANGLE1@ (ANGLE5*2)

//best to make this some power of 2 (with column decoder MUST be 1)
#define COLUMN WIDTH 1

#define CONTROLLER_DPAD_DEFAULT Ox7F
#define CONTROLLER_BTN_DEFAULT OxF

#define CHAR_NUM_ROWS 30
#define CHAR_NUM_COLS 80

//where the game will drop you on the map (FIXME make part of maze_t spec
for per-map customization)

#define STARTING POINT X 100

#define STARTING_POINT_Y 160

columns_t columns;

// precomputed trigonometric tables
float fSinTable[ANGLE360+1];

float fISinTable[ANGLE360+1];

float fCosTable[ANGLE360+1];

float fICosTable[ANGLE360+1];

float fTanTable[ANGLE360+1];

float fITanTable[ANGLE360+1];

float fFishTable[ANGLE360+1];

float fXStepTable[ANGLE360+1];
float fYStepTable[ANGLE360+1];

// player's attributes

int fPlayerX = STARTING_POINT_X; int tmpPlayerX; int storedPlayerX;
int fPlayerY = STARTING_POINT_Y; int tmpPlayerY; int storedPlayerY;
int fPlayerArc = ANGLE®@; int storedPlayerArc;

int fPlayerDistanceToTheProjectionPlane = 677;

int fPlayerSpeed = 6;

int fProjectionPlaneYCenter = PROJECTIONPLANEHEIGHT / 2;

// movement flag

bool fKeyUp = false;
bool fKeyDown = false;
bool fKeylLeft = false;
bool fKeyRight = false;

struct libusb_device_handle *keyboard;
struct libusb_device handle *controller;
uint8 t endpoint_address kb;

uint8 t endpoint_address ctr;

//pthread_mutex_t kp_mutex = PTHREAD MUTEX_ INITIALIZER;
//pthread_cond_t kp_cond = PTHREAD COND_INITIALIZER;

//function signatures
void render();
void create_tables();

float arc_to_rad(float);

void handle_key press(struct usb_keyboard packet *, bool);
void put_char(char, uint8 t, uint8 t, uint8 t);

void put_string(const char *, uint8_ t, uint8_t, uint8_t);
void clear_chars();

void set blackout(bool);

void menu_select();
void finish_level();

bool up pressed, down_pressed, left pressed, right pressed, enter_pressed;
bool up_ctr_pressed, down_ctr_pressed, left_ctr_pressed, right_ctr_pressed,
start_ctr_pressed;

bool jump_pressed, jump_pressed ctr, is_jumping;
bool sched_jump_start;
int jump_frame;

pthread t keyboard thread;
void *keyboard_thread_f(void *);

pthread_t controller_thread;
void *controller_ thread f(void *);

int column_decoder_fd;
//state for level completion / menu
int selected maze = 9; int cur_selected maze;
bool level select_show = true;
bool level finished = false;
bool menu_has_scrolled = false;
bool is paused = false;
bool just paused = false;
bool level selected = false;
extern maze_ t mazes[];
int main() {
//TODO way to clear screen

static const char filename[] = "/dev/column_decoder";

printf("Raycaster Userspace program started\n");

if ((column_decoder_fd = open(filename, O_RDWR)) == -1) {

fprintf(stderr, "could not open %s\n", filename);
return -1;

create_tables();

/* Open the keyboard */
if ((keyboard = openkeyboard(&endpoint_address kb)) == NULL)
fprintf(stderr, "Did not find a keyboard\n");

/* Open the controller */
if ((controller = opencontroller(&endpoint_address ctr)) == NULL)
fprintf(stderr, "Did not find a controller\n");

if(controller == NULL && keyboard == NULL)
exit(1);

//start keyboard and controller threads
pthread_create(&keyboard_thread, NULL, keyboard thread f, NULL);
pthread create(&controller thread, NULL, controller thread f, NULL);

render();

//reset column number in hardware for good measure

if (ioctl(column_decoder_ fd, COLUMN_DECODER_RESET COL_NUM, 0x00)) {
perror("ioctl(COLUMN DECODER_RESET COL_NUM) failed");
exit(1);

set_blackout(false);
clear_chars();

while(true) {

/*
pthread mutex lock(&kp _mutex);
while('up_pressed && !down_pressed && !left pressed &&
Iright_pressed
&& lup ctr pressed && !down_ctr pressed &&
lleft_ctr_pressed & & !right ctr_pressed) {
pthread cond wait(&kp_ cond,&kp mutex);

}
*/

if(!start _ctr pressed && !enter pressed) {

just_paused = false;
level selected = false;

menu_select();
if(!level select_show && !level finished) {

//pause menu
if((start_ctr_pressed || enter_pressed) && !is_paused &&
Ilevel selected) {

clear _chars();

is_paused = true;

level select_show = true;
storedPlayerX = fPlayerX;
storedPlayerY = fPlayerY;
storedPlayerArc = fPlayerArc;
cur_selected maze = selected maze;
just_paused = true;

//jump
if(sched jump_start) {

is_jumping = true;
jump_frame = 0;
sched_jump_start = false;

if(is_jumping) {
jump_frame++;

fProjectionPlaneYCenter = (int)
(PROJECTIONPLANEHEIGHT / 2) + (

(.1 * (jump_frame - 32) * (jump_frame - 32))
- 100

)4

if(fProjectionPlaneYCenter >=

(PROJECTIONPLANEHEIGHT / 2)) {

fProjectionPlaneYCenter =

PROJECTIONPLANEHEIGHT / 2;

fPlayerSpeed);

fPlayerSpeed);

is_jumping = false;

// rotate left
if(left_pressed || left_ctr_pressed) {
if((fPlayerArc -= ANGLE5) < ANGLE®)
fPlayerArc += ANGLE360;

// rotate right
else if(right_pressed || right_ctr pressed) {
if((fPlayerArc += ANGLE5) >= ANGLE360)
fPlayerArc -= ANGLE360;

}
// N
// |\ arc I
/7| N\ y
/7| \ I
// -
/] |--x--]
//

// sin(arc)=y/diagonal

// cos(arc)=x/diagonal where diagonal=speed
float playerXDir = fCosTable[fPlayerArc];
float playerYDir = fSinTable[fPlayerArc];

// move forward
if(up_pressed || up_ctr pressed) {

tmpPlayerX

fPlayerX + (int)(playerXDir *

tmpPlayerY

fPlayerY + (int)(playerYDir *

int map_index = (tmpPlayerX / TILE_SIZE) +

((tmpPlayerY / TILE _SIZE) * mazes[selected maze].height);

if(map_index < mazes[selected maze].area &&
Imazes[selected_maze].map[map_index]) {

fPlayerX = tmpPlayerX;
fPlayerY = tmpPlayerY;

}

else if(mazes[selected maze].map[map_index] == E)
finish_level();

// move backward
else if(down pressed || down ctr pressed) {

*

tmpPlayerX

fPlayerX - (int)(playerXDir
fPlayerSpeed);

*

tmpPlayerY

fPlayerY - (int)(playerYDir
fPlayerSpeed);

int map_index = (tmpPlayerX / TILE_SIZE)
((tmpPlayerY / TILE_SIZE) * mazes[selected maze].height);

+

if(map_index < mazes[selected _maze].area &&
Imazes[selected maze].map[map_index]) {

fPlayerX = tmpPlayerX;
fPlayerY = tmpPlayerY;
}
else if(mazes[selected_maze].map[map_index] == E)

finish_level();

//pthread _mutex_unlock(&kp mutex);

//check current texture is eagle, then finish level();

render();

pthread cancel(keyboard thread);
pthread_join(keyboard_thread, NULL);

pthread cancel(controller thread);
pthread_join(controller_thread, NULL);

return 0;
void menu_select() { //will pick up delay inside render because being
called inside main loop
if (level select _show) {
if(up_pressed || up_ctr pressed) {

if(!menu_has_scrolled && --selected maze < 0)
selected _maze = (NUM_MAZES - 1);

menu_has_scrolled = true;

if(is_paused) {

fPlayerX = selected maze == cur_selected maze ?
storedPlayerX : STARTING_POINT_X;
fPlayerY = selected maze == cur_selected maze ?
storedPlayerY : STARTING_POINT_Y;
fPlayerArc = selected _maze == cur_selected maze ?
storedPlayerArc : ANGLE®;
}
}
else if(down_pressed || down _ctr pressed) {
if(!menu_has_scrolled && ++selected maze == NUM_MAZES)
selected maze = false;
menu_has_scrolled = true;
if(is_paused) {
fPlayerX = selected maze == cur_selected maze ?
storedPlayerX : STARTING_POINT_X;
fPlayerY = selected maze == cur_selected maze ?
storedPlayerY : STARTING_POINT_Y;
fPlayerArc = selected _maze == cur_selected maze ?
storedPlayerArc : ANGLE®;

}

else if ((enter_pressed || start_ctr_pressed) &% !just_paused)

false;
false;

level select_show
menu_has_scrolled
is paused = false;
level selected = true;
clear _chars();

put_string("Find the Eagle", @, 33, 9);

return;

}

else
menu_has_scrolled = false;

int start_row = 10;
int col = 25;
char selection_title[40];

put_string((is_paused ? "Giving Up So Soon?" : "Choose Your
Nightmare..."), (start_row-2), col, 0);

for(int i=0@; i<NUM_MAZES; i++) {
if(is_paused && i == cur_selected maze) {
strcpy(selection_title, "Back to ");
strcat(selection_title, mazes[i].name);
}

else
strcpy(selection_title, mazes[i].name);

put_string(selection_title, (start_row+i), col,
selected maze==i);

}

void finish_level() {

clear_chars();
set_blackout(true);

put_string("Great job, definitely getting an A", 14, 23, 0);
sleep(5);

fPlayerX = STARTING_POINT_X;

fPlayerY = STARTING POINT Y;

fPlayerArc = ANGLEO;

clear_chars();
set_blackout(false);

level select_show = true;

void *keyboard thread_f(void *ignored) {
int transferred;
bool prev_jump_state;
struct usb_keyboard packet packet;
while(true) {
libusb_interrupt_transfer(keyboard, endpoint_address kb,
(unsigned char *) &packet, sizeof(packet),
&transferred, 0);
if (transferred == sizeof(packet)) {
prev_jump_state = jump_pressed;
//pthread mutex_ lock(&kp mutex);
up_pressed = is_key pressed(@x52, packet.keycode);
down_pressed is_key pressed(0x51, packet.keycode);
left pressed is_key pressed(0x50, packet.keycode);
right pressed = is_key pressed(0x4f, packet.keycode);
jump_pressed = is_key pressed(@x2c, packet.keycode) &&

llevel _select_show; //spacebar
enter_pressed = is_key pressed(0x28, packet.keycode);

if(jump_pressed & & !is_jumping && !prev_jump_state)

sched_jump_start = true;

//pthread _cond_signal(&kp _cond);
//pthread_mutex_unlock(&kp_mutex);

return NULL;

void *controller_ thread f(void *ignored) {
int transferred;
bool prev_jump_state ctr;
struct usb_keyboard packet packet;

while(true) {

libusb_interrupt_transfer(controller, endpoint_address ctr,
(unsigned char *) &packet, sizeof(packet),
&transferred, 0);

if (transferred == sizeof(packet)) {
prev_jump_state ctr = jump_pressed ctr;
//pthread _mutex_ lock(&kp mutex);

if (packet.keycode[1] != CONTROLLER DPAD DEFAULT ||
packet.keycode[2] != CONTROLLER DPAD DEFAULT || packet.keycode[2] !=
CONTROLLER_BTN_DEFAULT || packet.keycode[4] != 0) {

up_ctr_pressed =
is_controller_key pressed(2, 0x00, packet.keycode);

down_ctr_pressed = is_controller_key pressed(2,
oxff, packet.keycode);

left _ctr _pressed = is_controller_ key pressed(1,
0x00, packet.keycode);

right_ctr_pressed =
is_controller_key pressed(1l, oxff, packet.keycode);

jump_pressed_ctr = is controller_key pressed(3,
ox2f, packet.keycode) && !level select_show; //a btn

start_ctr_pressed = is_controller_key

0x20, packet.keycode);

if(jump_pressed_ctr && !is_jumping &&

Iprev_jump_state ctr)

return NULL;

void render() {

int verticalGrid;

intersection

int horizontalGrid;

TILE_SIZE

int distToNextVerticalGrid; // how far to the next bound (this is

multiple of

sched_jump_start = true;

}
else {
up_ctr_pressed = false;
down _ctr _pressed = false;
left ctr_pressed = false;
right_ctr_pressed = false;
jump_pressed ctr = false;
start _ctr_pressed = false;
}

//pthread _cond_signal(&kp _cond);
//pthread_mutex_unlock(&kp_mutex);

// , but some trick did here might cause

// the values off by 1

int distToNextHorizontalGrid; // tile size)
float xIntersection; // x and y intersections
float yIntersection;

float distToNextXIntersection;

float distToNextYIntersection;

uint8 t textureH, textureV, texture;
uint8_t vblank = 0;

int xGridIndex; // the current cell that the ray is

// horizotal or vertical coordinate of

// theoritically, this will be multiple of

in

pressed(4,

int yGridIndex;

float distToVerticalGridBeingHit; // the distance of the x and y
ray intersections from
float distToHorizontalGridBeingHit; // the viewpoint

int castArc, castColumn;

castArc = fPlayerArc;
// field of view is 60 degree with the point of view (player's
direction in the middle)

// 30 30
// n
/1l N\ |/
!/l \|/
// v

// we will trace the rays starting from the leftmost ray
castArc -= ANGLE30;

// wrap around if necessary
if(castArc < 0)

castArc = ANGLE360 + castArc;

for(castColumn=0; castColumn < PROJECTIONPLANEWIDTH; castColumn +=
COLUMN_WIDTH) {

// ray is between © to 180 degree (1st and 2nd quadrant)
// ray is facing down
if(castArc > ANGLE@ && castArc < ANGLE180) {
// truncuate then add to get the coordinate of the FIRST
grid (horizontal
// wall) that is in front of the player (this is in pixel

unit)
// ROUND DOWN

horizontalGrid = (fPlayerY / TILE_SIZE) * TILE_SIZE +
TILE_SIZE;

// compute distance to the next horizontal wall

distToNextHorizontalGrid = TILE_SIZE;

float xtemp = fITanTable[castArc] * (horizontalGrid -
fPlayerY);

// we can get the vertical distance to that wall by
// (horizontalGrid-GLplayerY)
// we can get the horizontal distance to that wall by

// 1/tan(arc)*verticalDistance
// find the x interception to that wall
xIntersection = xtemp + fPlayerX;

// else, the ray is facing up
else {

horizontalGrid = (fPlayerY / TILE_SIZE) * TILE SIZE;
distToNextHorizontalGrid = -TILE_SIZE;

float xtemp = fITanTable[castArc] * (horizontalGrid -
fPlayerY);

xIntersection = xtemp + fPlayerX;

horizontalGrid--;

// LOOK FOR HORIZONTAL WALL
if(castArc == ANGLEQ || castArc == ANGLE180)

distToHorizontalGridBeingHit=_ FLT MAX__ ;//Float.MAX VALUE;

// else, move the ray until it hits a horizontal wall

else {
distToNextXIntersection = fXStepTable[castArc];

while(true) {

XGridIndex = (int)(xIntersection / TILE SIZE);
// in the picture, yGridIndex will be 1
yGridIndex = (horizontalGrid / TILE_SIZE);

if((xGridIndex >= mazes[selected maze].width) ||
(yGridIndex >= mazes[selected_maze].height) ||
xGridIndex < @ || yGridIndex < @) {

distToHorizontalGridBeingHit = _ FLT _MAX_ ;
break;

}

else if (mazes[selected_maze].map[yGridIndex *
mazes[selected_maze].width + xGridIndex]) {

textureH =
mazes[selected _maze].map[yGridIndex * mazes[selected_maze].width +

XGridIndex] - 1;
distToHorizontalGridBeingHit =
(xIntersection-fPlayerX)*fICosTable[castArc];
break;
}
// else, the ray is not blocked, extend to the next block
else {
xIntersection += distToNextXIntersection;
horizontalGrid += distToNextHorizontalGrid;

// FOLLOW X RAY
if(castArc < ANGLE90Q || castArc > ANGLE270) {

verticalGrid = TILE SIZE + (fPlayerX / TILE SIZE) * TILE_SIZE;
distToNextVerticalGrid = TILE_SIZE;

float ytemp = fTanTable[castArc] * (verticalGrid - fPlayerX);
yIntersection = ytemp + fPlayerY;

}

// RAY FACING LEFT

else {
verticalGrid = (fPlayerX/TILE_SIZE)*TILE_SIZE;
distToNextVerticalGrid = -TILE_SIZE;
float ytemp = fTanTable[castArc] * (verticalGrid - fPlayerX);
yIntersection = ytemp + fPlayerY;
verticalGrid--;

}

// LOOK FOR VERTICAL WALL

if(castArc == ANGLE9@ || castArc == ANGLE270)
distToVerticalGridBeingHit = _ FLT _MAX_ ;

else {

distToNextYIntersection = fYStepTable[castArc];

while(true) {
// compute current map position to inspect

XGridIndex = (verticalGrid / TILE_SIZE);
yGridIndex = (int)(yIntersection / TILE_SIZE);

if ((xGridIndex >= mazes[selected maze].width) ||
(yGridIndex >= mazes[selected_maze].height) ||
xGridIndex < @ || yGridIndex < @) {
distToVerticalGridBeingHit = _ FLT _MAX_ ;
break;

}

else if (mazes[selected_maze].map[yGridIndex *
mazes[selected_maze].width + xGridIndex]) {

textureV =
mazes[selected _maze].map[yGridIndex * mazes[selected_maze].width +
XGridIndex] - 1;
distToVerticalGridBeingHit = (yIntersection - fPlayerY)
* fISinTable[castArc];

break;

}

else {
yIntersection += distToNextYIntersection;
verticalGrid += distToNextVerticalGrid;

}

// DRAW THE WALL SLICE
float dist;
uintl6e_t topOfWall; // used to compute the top and bottom of the
sliver that
uintl6_t bottomOfWall; // will be the staring point of floor and
ceiling
uint8_t wall_side; //0=x, 1=y
uint8 t offset;

// determine which ray strikes a closer wall.
// if yray distance to the wall is closer, the yDistance will
be shorter than
// the xDistance
if (distToHorizontalGridBeingHit < distToVerticalGridBeingHit) {

// the next function call (drawRayOnMap()) is not a part of

raycating rendering part,
// it just draws the ray on the overhead map to illustrate the

raycasting process
dist = distToHorizontalGridBeingHit;
texture = textureH;
wall side = 0;
offset = (int)xIntersection % TILE SIZE;
}
// else, we use xray instead (meaning the vertical wall is closer
than
// the horizontal wall)
else {

// the next function call (drawRayOnMap()) is not a part of
raycasting rendering part,
// it just draws the ray on the overhead map to illustrate the
raycasting process
dist = distToVerticalGridBeingHit;
texture = textureV;
wall side = 1;
offset = (int)yIntersection % TILE_SIZE;

// correct distance (compensate for the fishbown effect)
dist /= fFishTable[castColumn];

//0 distance makes no sense for below calcs
if(dist == 0.0)
dist = .00001;

// projected wall height/wall height =
fPlayerDistToProjectionPlane/dist;
int projectedWallHeight = (int)(WALL_HEIGHT *
(float)fPlayerDistanceToTheProjectionPlane / dist);
projectedWallHeight = projectedWallHeight > 32767 ? 32767 :
projectedWallHeight;

bottomOfWall = fProjectionPlaneYCenter + (int)(projectedWallHeight
* 9.5F);
bottomOfWall = bottomOfWall > 32767 ? 32767 : bottomOfWall;

topOfWall = PROJECTIONPLANEHEIGHT - bottomOfWall;

columns.column_args[castColumn].top_of wall = topOfWall;
columns.column_args[castColumn].wall side = wall side;

columns.column_args[castColumn].texture _type = texture;

columns.column_args[castColumn].wall height =
(short)projectedWallHeight;

columns.column_args[castColumn].texture_offset = offset;

// TRACE THE NEXT RAY

castArc += COLUMN_WIDTH;

if (castArc >= ANGLE360)
castArc -= ANGLE360;

//wait for vblank to send columns
while(true) {

ioctl(column_decoder_ fd, COLUMN_DECODER_READ VBLANK, &vblank);

if(vblank)
break;

usleep(50);

//send the columns to the driver

if (ioctl(column_decoder fd, COLUMN DECODER _WRITE COLUMNS, &columns)) {
perror("ioctl(COLUMN DECODER_WRITE_COLUMNS) failed");
return;

void create tables() {

int i;
float radian;

for (i=0; i <= ANGLE360; i++) {

// get the radian value (the last addition is to avoid division by

0, try removing
// that and you'll see a hole in the wall when a ray is at 0,

90, 180, or 270 degree)

radian = arc_to rad(i) + (float)(0.0001);

fSinTable[i] = (float)sin(radian);

fISinTable[i] = (1.0F / (fSinTable[i]));

fCosTable[i] = (float)cos(radian);

fICosTable[i] = (1.0F / (fCosTable[i]));

fTanTable[i] = (float)tan(radian);
fITanTable[i] = (1.9F / fTanTable[i]);

// you can see that the distance between xi is the same
// if we know the angle

// | _/next xi
// |

// ____ /|next xi slope = tan = height / dist between

// /|

/! dist between xi = height/tan where height=tile
size

// old xi|

// distance between xi = x_step[view_angle];

//

//

// facine left

// facing left

if (i >= ANGLE90 && i < ANGLE270) {

fXStepTable[i] = (float)(TILE_SIZE / fTanTable[i]);
if (fXStepTable[i] > ©)
fXStepTable[i] = -1 * fXStepTable[i];
}
// facing right
else {

fXStepTable[i] = (float)(TILE SIZE / fTanTable[i]);
if(fXStepTable[i] < @)
fXStepTable[i] = -1 * fXStepTable[i];

// FACING DOWN
if (i >= ANGLE® && i < ANGLE180) {

fYStepTable[i] = (float)(TILE SIZE * fTanTable[i]);
if (fYStepTable[i] < ©)
fYStepTable[i] = -1 * fYStepTable[i];
¥
// FACING UP
else {
fYStepTable[i] = (float)(TILE SIZE * fTanTable[i]);
if (fYStepTable[i] > ©0)
fYStepTable[i] = -1 * fYStepTable[i];

for (i = -ANGLE3@; i <= ANGLE3@; i++) {

radian = arc_to rad(i);

// we don't have negative angle, so make it start at ©
// this will give range @ to 320

fFishTable[i + ANGLE3@] = (float)(1.0F / cos(radian));

//***//

//* Convert arc to radian
//***//

float arc_to_rad(float arc_angle) {

return ((float)(arc_angle*M PI)/(float)ANGLE180);
/*supplemental functions dealing with screen color override and text*/
void put_char(char c, uint8 t row, uint8 t col, uint8_ t highlight) {

if(row >= CHAR_NUM ROWS || col >= CHAR_NUM COLS)
return;

char_tile t char_tile = { c, row, col, highlight };
if (ioctl(column_decoder_fd, COLUMN_DECODER_WRITE_CHAR, &char_tile))

perror("ioctl(COLUMN_DECODER_WRITE_CHAR) failed");
exit(1);

void clear _chars() {

for(uint8 t row=0; row<CHAR_NUM ROWS; row++) {
for(uint8 t col=0; col<CHAR_NUM_COLS; col++)
put _char(' ', row, col, 9);

void put_string(const char *s, uint8 t row, uint8 t col, uint8 t highlight)
{

char c;

if(row >= CHAR_NUM ROWS)
return;

while ((c = *s++) != 0 && col < CHAR_NUM_COLS)
put_char(c, row, col++, highlight);

void set blackout(bool blackout) {

if(blackout) {
if (ioctl(column_decoder_fd, COLUMN_DECODER_BLACKOUT_SCREEN,
0x00)) {
perror("ioctl(COLUMN_DECODER_BLACKOUT_SCREEN) failed");
exit(1);

}

else {
if (ioctl(column_decoder fd,
COLUMN_DECODER_REMOVE_BLACKOUT_SCREEN, 0x00)) {
perror("ioctl(COLUMN DECODER_REMOVE_ BLACKOUT SCREEN)
failed");
exit(1);

