Othello: Minimax on

Different Boards

Bryanna Geiger: bg2603

What is Othello?

Board Game — derived from Reversi (original game)
8x8 square grid
> My implementation: text output for the board
% Start state: 2 black pieces, 2 white pieces
> occupying the middle 4 squares
< Adisk (or row of disks) is surrounded by the opposing
color

> The surrounding disks will be flipped
> How a player earns “points”

Standard Initial Board State Above
> My implementation: Board 1

What is Othello continued:

End Game:
> When there are no valid moves for either player
[A turn is skipped if player 1 cannot go, but
player 2 still can go
> My implementation
m Assoon as any player cannot go, game ends
% Winning:
> The player with more of their colored disks wins (can
end in a tie, although it is uncommon)

Figure 1: An example of the Othello board game

Minimax Algorithm

Backtracking Algorithm — Recursive
% Asasearching algorithm — commonly used 0 (MAX)

lig: Sl
. MAX's Best Move
In games

> 2048, chess, othello, checkers, go, sudoku, 1(MIN)

ken ken <
% Two players /\ ; /\

2 (MAX) ‘ ‘)

> “Maximizer” and “Minimizer” ‘\20 G - e
> Each player will either try to maximize value

of a move while the other player will try to ‘
3(MIN) 20 -10 -0 =8

co
'

[ary

o

minimize

4 (Leaf Nodes)

Minimax and Heuristics

Different heuristics can be

implemented
> Will adjust values of the board

> i.e.in 2048: a move that keeps . Region 1
the highest valued piece in a
corner would have a higher . Region 2
value than moving it

> i.e. in Othello, the corner spots Region 3
are ideal and would have a

higher value . Region 4

Region 5

Approach and Background

COMS 4701: Artificial Intelligence

Coded the minimax algorithm with alpha-beta

pruning in Python 5

A matter of translating Python code to Haskell o|X

Similar format and approach to the game algorithm = z

itself |
Tic-Tac-Toe — Othello ® o|x|x

Started with a scaled down version of a game similar == :

in nature to Othello: Tic-Tac-Toe

X Wins.

Implemented minimax on tic-tac-toe
Applied to Othello: small scale — larger scale

QIX|X = O

X Ultimately Wins. X Ultimately Wins.

>
>

0

>

>

% Goal:

vy

Approach and Background continued:

% Various minimax implementations in different games

Tic-tac-toe, 2048, chess, go, etc.

Apply approaches to Othello 2048 26372
% Reference site:

For reference:

http://www.pressibus.org/ataxx/autre/minimax/paper.html 4
Particularly helping in determining how to address applying minimax to
different boards) 2,

Different boards to run Othello on 4 ﬁ

m Apply minimax to different boards at different depths, rather

than just the standard Othello game 2

Comparing the results across different boards
Parallelizing the minimax algorithm

40

40

g

40

*,

40

‘using’ parlList rseq
parlList
> Evaluates the list elements in
parallel
Straightforward in terms of

implementation
> Largely using lists — parList
made sense to use
Basis behind approach:
> Sudoku
] Game playing
algorithms: a Sukoku
version took a similar
approach so | thought
it would be applicable
to Othello for the
minimax algorithm
implementation

Minimax Psuedocode

° ° ° °
(] minimax(in game board, in int depth, in int max_depth,
I 2 I I I out score chosen_score, out score chosen_move)
L]

begin
if (depth = max_depth) then
chosen_score = evaluation(board);
else
moves_list = generate_moves(board);
if (moves_list = NULL) then
chosen_score = evaluation(board);
else
for (i = 1 to moves_list.length) do
best_score = infinity;
new_board = board;
apply_move(new_board, moves_list[i]);
minimax(new_board, depth+1l, max_depth, the_score, the_move);
if (better(the_score, best_score)) then
best_score = the_score;
best_move = the_move;
endif
enddo
chosen_score = best_score;
oy m— U . “ m— chosen_move = best_move;
minimax :: 1t -> Othello -> Boarc IntT endif
minimax dpth col b endif
| endGame = if (adv col b) > @ end.
then 100000
else -100000
| dpth <= @ = adv col b
| otherwise = if (moves (changeColor col) b) /= []
then -maxPt

else maxPt

endGame = null (moves col b) & null (moves (changeColor col) b)
clrUp = if (moves (changeColor col) b) /= []
then changeColor col
else col
nm = if clrUp /= col
then (moves (changeColor col) b)
else (moves col b)
maxPt = maximum (map (minimax (dpth - 1) clrUp . move clrUp b) nm “using™ parList rseq)

Threadscope Comparison

0s 5s 10s 15s 20s 25s 30s 35s

. S S L < Total Run Time
> 1 Core:38.47 s
> 4 Cores: 18.29s

Timeline

Timeline

0s 5s 10s 15s
| A A A A 1 A . . A | A A A A 1 A A A
Activity
Time Heap GC Sparkstats Sparksizes Processinfo Raw events
Total time: jB8.47s
Mutator time: 37.78s HECO
GCtime: 0.69s
Productivity: 98.2% of mutator vs total
HEC1
R/
% Top Left Image: s
> Board 1, Depth 4, 1 Core
7 H HEC3
% Right Image:

> Board 1, Depth 4,4

Time Heap GC Sparkstats Sparksizes Processinfo Raw events

Cores Totaltime: 18.295
Mutator time: 17.73s
GCtime: 0.6

Productivity: 96.9% of mutator vs total

Runtime comparison by depths (2 and 4)

Total Run Time

Depth of 2

Depth of 4

Board 1 0.82 seconds 18.29 seconds
Board 2 0.578 seconds 6.84 seconds
Board 3 0.984 seconds 36.65 seconds

% Note that the default depth size is set to 4, although this
can be altered when depth is declared in the code
« Run with 4 Cores at depths of 2 and 4

Runtime comparison across boards (1-3)

Total Run Time With 1 Core With 4 Cores Difference
(seconds)

Board 1 38.47 seconds 18.29 seconds 20.17 s (47.54%)
Board 2 17.24 seconds 6.84 seconds 10.4 s (39.68%)
Board 3 93.46 seconds 36.65 seconds 56.81 s (39.21%)

Y/

< Run with the default depth of 4

R

< Interesting note

> Board 3 is currently at the longest runtime, despite being
midway through the game as the initial board state

% Runtime comparison across board 1, board 2, and board 3

% Pre-recorded video demo
> Change video quality if blurry

(https://www.youtube.com/watch?v
=aPAZCjxofkk)
Run on board 1, board 2, and board 3
Depth of 4 is used in the demo
4 cores are used in the demo video
Commands used:

m ./test boardl +RTS -N4 -s

] .Jtest board2 +RTS -N4 -s

m ./test board3 +RTS -N4 -s

] It can be run without an

YVYVYY

argument, however, it will
default to running board 1
% Boards:
> Board 1: default board, the way an
actual othello game would start
[2 b, 2 w pieces
> Board 2: mid-game
] 10b, 6w
> Board 3: mid-game
[7b,11w

01234567

Start and
end states

Start and
end states

0]
1
2
3
4
5
6
74

012345 67

01234567

NOUVTBhWNRERO
CTTTCOTTCo 2
oot o pll o i o il © il =l o -
OCOCUTU=EU0U =
CUO=S=SU0U0= =
CUO=E=0CU0TUE=E =
COUODUOUTUE=E =
COUTU=E =0T =

EEETETEEE
NOUVThWNREO

01234567

b won!

—__b_w_
w bww w .
w Wa s Board 2:
bwwwwww Start and
w WWwwww
WWWWWW W end states
w WWwWWwww

01234567

w Won!

01234567

oo oo |
oo oo |
(o rilo il o o 7 = gt = i -
TCOCOCUOTUTUOS =
Lo o gl o at o gl o B o - T3
Lo o gl ot o gl o it o i T
Lo o gl ot o 2l o i o il o
logi-giontiodlegiogion|
NOUTAWNRFO

01234567

b won!

http://www.youtube.com/watch?v=aPAZCjxofkk

>
>

Going Forward

% Toimplement:

Alpha-beta pruning
User Interaction

m Option for the user to actually play the Othello game themselves

[Keep options to run on different boards
Visualization

[Othello board that is not just a text output

[Being able to click where to move would be an interesting application
Parallelization

[Explore different strategies, approaches, and places where code can be optimized
Heuristics

[Implementing heuristics for Othello

° If a corner is an option, the player should make that move, etc.

Troubleshooting

m Comparing runtimes of different boards

[Board 3 is the longest at ~40 seconds running on 4 cores vs Board 1 at ~20 seconds on 4 cores

References

Google Doc Link With Full References Sheet:

https://docs.google.com/document/d/1KhxJaxueMmcWSAnAHaaKYi5vADCF26gKckw655Q4K0s/edit?usp=sh
aring

