
Othello: Minimax on
Different Boards

Bryanna Geiger: bg2603

What is Othello?
❖ Board Game → derived from Reversi (original game)

❖ 8x8 square grid
➢ My implementation: text output for the board

❖ Start state: 2 black pieces, 2 white pieces
➢ occupying the middle 4 squares

❖ A disk (or row of disks) is surrounded by the opposing

color
➢ The surrounding disks will be flipped

➢ How a player earns “points”

❖ Standard Initial Board State Above
➢ My implementation: Board 1

What is Othello continued:

❖ End Game:
➢ When there are no valid moves for either player

■ A turn is skipped if player 1 cannot go, but

player 2 still can go

➢ My implementation

■ As soon as any player cannot go, game ends

❖ Winning:
➢ The player with more of their colored disks wins (can

end in a tie, although it is uncommon)

Minimax Algorithm
❖ Backtracking Algorithm → Recursive

❖ As a searching algorithm → commonly used

in games
➢ 2048, chess, othello, checkers, go, sudoku,

ken ken

❖ Two players
➢ “Maximizer” and “Minimizer”

➢ Each player will either try to maximize value

of a move while the other player will try to

minimize

Minimax and Heuristics

❖ Different heuristics can be

implemented
➢ Will adjust values of the board

➢ i.e. in 2048: a move that keeps

the highest valued piece in a

corner would have a higher

value than moving it

➢ i.e. in Othello, the corner spots

are ideal and would have a

higher value

Approach and Background

❖ COMS 4701: Artificial Intelligence
➢ Coded the minimax algorithm with alpha-beta

pruning in Python

➢ A matter of translating Python code to Haskell

➢ Similar format and approach to the game algorithm

itself

❖ Tic-Tac-Toe → Othello
➢ Started with a scaled down version of a game similar

in nature to Othello: Tic-Tac-Toe

➢ Implemented minimax on tic-tac-toe

➢ Applied to Othello: small scale → larger scale

Approach and Background continued:
❖ Various minimax implementations in different games

➢ Tic-tac-toe, 2048, chess, go, etc.

➢ Apply approaches to Othello

❖ Reference site:
➢ For reference:

http://www.pressibus.org/ataxx/autre/minimax/paper.html

➢ Particularly helping in determining how to address applying minimax to

different boards

❖ Goal:
➢ Different boards to run Othello on

■ Apply minimax to different boards at different depths, rather

than just the standard Othello game

➢ Comparing the results across different boards

➢ Parallelizing the minimax algorithm

Parallelization: Minimax
❖ ‘using’ parList rseq

❖ parList
➢ Evaluates the list elements in

parallel

❖ Straightforward in terms of

implementation
➢ Largely using lists → parList

made sense to use

❖ Basis behind approach:
➢ Sudoku

■ Game playing

algorithms: a Sukoku

version took a similar

approach so I thought

it would be applicable

to Othello for the

minimax algorithm

implementation

Threadscope Comparison

❖ Top Left Image:
➢ Board 1, Depth 4, 1 Core

❖ Right Image:
➢ Board 1, Depth 4, 4

Cores

❖ Total Run Time
➢ 1 Core: 38.47 s
➢ 4 Cores: 18.29 s

Runtime comparison by depths (2 and 4)

Total Run Time Depth of 2 Depth of 4

Board 1 0.82 seconds 18.29 seconds

Board 2 0.578 seconds 6.84 seconds

Board 3 0.984 seconds 36.65 seconds

❖ Note that the default depth size is set to 4, although this
can be altered when depth is declared in the code

❖ Run with 4 Cores at depths of 2 and 4

Runtime comparison across boards (1-3)

Total Run Time
(seconds)

With 1 Core With 4 Cores Difference

Board 1 38.47 seconds 18.29 seconds 20.17 s (47.54%)

Board 2 17.24 seconds 6.84 seconds 10.4 s (39.68%)

Board 3 93.46 seconds 36.65 seconds 56.81 s (39.21%)

❖ Runtime comparison across board 1, board 2, and board 3
❖ Run with the default depth of 4
❖ Interesting note

➢ Board 3 is currently at the longest runtime, despite being
midway through the game as the initial board state

Demo
❖ Pre-recorded video demo

➢ Change video quality if blurry

(https://www.youtube.com/watch?v

=aPAZCjxofkk)

➢ Run on board 1, board 2, and board 3

➢ Depth of 4 is used in the demo

➢ 4 cores are used in the demo video

➢ Commands used:

■ ./test board1 +RTS -N4 -s

■ ./test board2 +RTS -N4 -s

■ ./test board3 +RTS -N4 -s

■ It can be run without an

argument, however, it will

default to running board 1

❖ Boards:
➢ Board 1: default board, the way an

actual othello game would start

■ 2 b, 2 w pieces

➢ Board 2: mid-game

■ 10 b, 6 w

➢ Board 3: mid-game

■ 7 b, 11 w

Board 1:
Start and
end states

Board 2:
Start and
end states

Board 3:
Start and
end states

Demo

http://www.youtube.com/watch?v=aPAZCjxofkk

Going Forward
❖ To implement:

➢ Alpha-beta pruning

➢ User Interaction

■ Option for the user to actually play the Othello game themselves

■ Keep options to run on different boards

➢ Visualization

■ Othello board that is not just a text output

■ Being able to click where to move would be an interesting application

➢ Parallelization

■ Explore different strategies, approaches, and places where code can be optimized

➢ Heuristics

■ Implementing heuristics for Othello

● If a corner is an option, the player should make that move, etc.

➢ Troubleshooting

■ Comparing runtimes of different boards

■ Board 3 is the longest at ~40 seconds running on 4 cores vs Board 1 at ~20 seconds on 4 cores

References

Google Doc Link With Full References Sheet:

https://docs.google.com/document/d/1KhxJaxueMmcWSAnAHaaKYi5vADCF26gKcKw655Q4KOs/edit?usp=sh

aring

