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Functors: Types That Hold a Type in a Box

class  Functor  f  where
  fmap  ::  (a  ->  b)  ->  f  a  ->  f  b

f is a type constructor of kind * -> *. “A box of”

fmap g x means “apply g to every a in the box x to produce a box of b’s”

data  Maybe  a  =  Just  a  |  Nothing
instance  Functor  Maybe  where

  fmap  _  Nothing   =  Nothing
  fmap  g  (Just  x)  =  Just  (g  x)

data  Either  a  b  =  Left  a  |  Right  b
instance  Functor  (Either  a)  where

  fmap  _  (Left  x)   =  Left  x
  fmap  g  (Right  y)  =  Right  (g  y)

data  List  a  =  Cons  a  (List  a)  |  Nil
instance  Functor  List  where

  fmap  g  (Cons  x  xs)  =  Cons  (g  x)  (fmap  g  xs)
  fmap  _  Nil          =  Nil



IO as a Functor

Functor takes a type constructor of kind * -> *, which is the kind of IO

Prelude>  :k  IO
IO  ::  *  ->  *

IO does behave like a kind of box:

query  ::  IO  String
query  =  do  line  <-  getLine        −− getLine returns a box :: IO String

           let  res  =  line  ++  "!"  −− take line out of box from getLine
           return  res             −− put res in an IO box

The definition of Functor IO in the Prelude: (alternative syntax)

instance  Functor  IO  where
  fmap  f  action  =  do  result  <-  action   −− take result from the box
                     return  (f  result)  −− apply f; put it a box



Using fmap with I/O Actions

main  =  do  line  <-  getLine
          let  revLine  =  reverse  line       −− Tedious but correct
          putStrLn  revLine

main  =  do  revLine  <-  fmap  reverse  getLine  −− More direct
          putStrLn  revLine

Prelude>  fmap  (++"!")  getLine
foo
"foo!"



Functions are Functors
Prelude>  :k  (->)
(->)  ::  *  ->  *  ->  *      −−  Like  ̀ `(+),''  (−>)  is  a  function  on  types

That is, the function type constructor -> takes two concrete types and
produces a third (a function). This is the same kind as Either

Prelude>  :k  ((->)  Int)
((->)  Int)  ::  *  ->  *

The ((->) Int) type constructor takes type a and produces functions that
tranform Ints to a’s. fmap will apply a function that transforms the a’s to b’s.

instance  Functor  ((->)  a)  where
  fmap  f  g  =  \x  ->  f  (g  x)  −− Wait, this is just function composition!

instance  Functor  ((->)  a)  where
  fmap  =  (.)                −− Much more succinct (Prelude definition)



Fmapping Functions: fmap f g = f . g

Prelude>  :t  fmap  (*3)  (+100)
fmap  (*3)  (+100)  ::  Num  b  =>  b  ->  b

Prelude>  fmap  (*3)  (+100)  1
303

Prelude>  (*3)  ̀ fmap`  (+100)  $  1
303

Prelude>  (*3)  .  (+100)  $  1
303

Prelude>  fmap  (show  .  (*3))  (+100)  1
"303"



Partially Applying fmap

Prelude>  :t  fmap
fmap  ::  Functor  f  =>  (a  ->  b)  ->  f  a  ->  f  b

Prelude>  :t  fmap  (*3)
fmap  (*3)  ::  (Functor  f,  Num  b)  =>  f  b  ->  f  b

“fmap (*3)” is a function that operates on functors of the Num type class
(“functors over numbers”). The function (*3) has been lifted to functors

Prelude>  :t  fmap  (replicate  3)
fmap  (replicate  3)  ::  Functor  f  =>  f  a  ->  f  [a]

“fmap (replicate 3)” is a function over functors that generates “boxed lists”



Functor Laws

Applying the identity function does not change the functor
(“fmap does not change the box”):

                    fmap  id  =  id

Applying fmap with two functions is like applying their composition
(“applying functions to the box is like applying them in the box”):

               fmap  (f  .  g)  =  fmap  f  .  fmap  g

     fmap  (\y  ->  f  (g  y))  x  =  fmap  f  (fmap  g  x)  −− Equivalent



data  Maybe  a  =  Just  a  |  Nothing      instance  Functor  Maybe  where
                                      fmap  _  Nothing   =  Nothing

{−  Does  Maybe  follow  the  laws?  −}        fmap  f  (Just  x)  =  Just  (f  x)

fmap  id  Nothing   =  Nothing            −− from the definition of fmap
fmap  id  (Just  x)  =  Just  (id  x)        −− from the definition of fmap

                 =  Just  x             −− from the definition of id

(fmap  f  .  fmap  g)  Nothing  =  fmap  f  (fmap  g  Nothing)  −− def of .
                          =  fmap  f  Nothing           −− def of fmap
                          =  Nothing                  −− def of fmap
                          =  fmap  (f  .  g)  Nothing     −− def of fmap

(fmap  f  .  fmap  g)  (Just  x)  =  fmap  f  (fmap  g  (Just  x))−− def of .
                           =  fmap  f  (Just  (g  x))      −− def of fmap
                           =  Just  (f  (g  x))           −− def of fmap
                           =  Just  ((f  .  g)  x)         −− def of .
                           =  fmap  (f  .  g)  (Just  x)    −− def of fmap



My So-Called Functor

data  CMaybe  a  =  CNothing  |  CJust  Int  a
                  deriving  Show

instance  Functor  CMaybe  where    −− Purported
  fmap  _  CNothing     =  CNothing
  fmap  f  (CJust  c  x)  =  CJust  (c+1)  (f  x)

*Main>  fmap  id  CNothing
CNothing              −−  OK:  fmap  id  Nothing  =  id  Nothing
*Main>  fmap  id  (CJust  42  "Hello")
CJust  43  "Hello"      −−  FAIL:  fmap  id  /=  id  because  43  /=  42

*Main>  fmap  (  (+1)  .  (+1)  )  (CJust  42  100)
CJust  43  102

*Main>  (fmap  (+1)  .  fmap  (+1))  (CJust  42  100)
CJust  44  102      −−  FAIL:  fmap  (f  .  g)  /=  fmap  f  .  fmap  g  because  43  /=  44



Multi-Argument Functions on Functors: Applicative Functors

Functions in Hakell are Curried:
1  +  2  =  (+)  1  2  =  ((+)  1)  2  =  (1+)  2  =  3

What if we wanted to perform 1+2 in a Functor?

class  Functor  f  where
  fmap  ::  (a  ->  b)  ->  f  a  ->  f  b

fmap is “apply a normal function to a functor, producing a functor”

Say we want to add 1 to 2 in the [] Functor (lists):

[1]  +  [2]  =  (+)  [1]  [2]          −− Infix to prefix
          =  (fmap  (+)  [1])  [2]   −− fmap: apply function to functor
          =  [(1+)]  [2]           −− Now what?

We want to apply a Functor containing functions to another functor, e.g.,
something with the signature [a -> b] -> [a] -> [b]



Applicative Functors: Applying Functions in a Functor
infixl  4  <*>
class  Functor  f  =>  Applicative  f  where

  pure   ::  a  ->  f  a                  −− Box something, e.g., a function
  (<*>)  ::  f  (a  ->  b)  ->  f  a  ->  f  b  −− Apply boxed function to a box

instance  Applicative  Maybe  where
  pure  =  Just                        −− Put it in a “Just” box
  Nothing  <*>  _  =  Nothing            −− No function to apply
  Just  f  <*>  m   =  fmap  f  m           −− Apply function-in-a-box f

Prelude>  :t  fmap  (+)  (Just  1)
fmap  (+)  (Just  1)  ::  Num  a  =>  Maybe  (a  ->  a)  −−  Function−in−a−box

Prelude>  fmap  (+)  (Just  1)  <*>  (Just  2)
Just  3
Prelude>  fmap  (+)  Nothing  <*>  (Just  2)
Nothing                              −−  Nothing  is  a  buzzkiller



Pure and the <$> Operator
Prelude>  pure  (-)  <*>  Just  10  <*>  Just  4
Just  6
Prelude>  pure  (10-)  <*>  Just  4
Just  6
Prelude>  (-)  ̀ fmap`  (Just  10)  <*>  Just  4
Just  6

<$> is simply an infix fmap meant to remind you of the $ operator

infixl  4  <$>
(<$>)  ::  Functor  f  =>  (a  ->  b)  ->  f  a  ->  f  b
f  <$>  x  =  fmap  f  x       −− Or equivalently, f `fmap` x

So f <$> x <*> y <*> z is like f x y z but on applicative functors x, y, z

Prelude>  (+)  <$>  [1]  <*>  [2]
[3]
Prelude>  (,,)  <$>  Just  "PFP"  <*>  Just  "Rocks"  <*>  Just  "Out"
Just  ("PFP","Rocks","Out")



Maybe as an Applicative Functor

instance  Functor  Maybe  where
  fmap  _  Nothing   =  Nothing
  fmap  g  (Just  x)  =  Just  (g  x)

infixl  4  <$>
f  <$>  x  =  fmap  f  x

infixl  4  <*>
instance  Applicative  Maybe  where

  pure  =  Just
  Nothing  <*>  _  =  Nothing
  Just  f   <*>  m  =  fmap  f  m

     f  <$>  Just  x    <*>  Just  y
=  (   f  <$>  Just  x  )  <*>  Just  y    −− a <$> b <*> c = (a <$> b) <*> c
=  (fmap  f  (Just  x))  <*>  Just  y    −− Definition of <$>
=  (      Just  (f  x))  <*>  Just  y    −− Definition of fmap Maybe
=        fmap  (f  x)      (Just  y)   −− Definition of <*>
=        Just  (f  x  y)              −− Definition of fmap Maybe



Lists are Applicative Functors

instance  Applicative  []  where
  pure  x  =  [x]                            −− Pure makes singleton list
  fs  <*>  xs  =  [  f  x  |  f  <-  fs,  x  <-  xs  ]  −− All combinations

<*> associates (evaluates) left-to-right, so the last list is iterated over first:

Prelude>  [  (++"!"),  (++"?"),  (++".")  ]  <*>  [  "Run",  "GHC"  ]
["Run!","GHC!","Run?","GHC?","Run.","GHC."]

Prelude>  [  x+y  |  x  <-  [100,200,300],  y  <-  [1..3]  ]
[101,102,103,201,202,203,301,302,303]

Prelude>  (+)  <$>  [100,200,300]  <*>  [1..3]
[101,102,103,201,202,203,301,302,303]

Prelude>  pure  (+)  <*>  [100,200,300]  <*>  [1..3]
[101,102,103,201,202,203,301,302,303]



IO is an Applicative Functor

<*> enables I/O actions to be used more like functions

instance  Applicative  IO  where
  pure  =  return
  a  <*>  b  =  do  f  <-  a
               x  <-  b
               return  (f  x)

Specialized to IO actions,
(<*>)  ::  IO  (a  ->  b)

      ->  IO  a
      ->  IO  b

main  =  do
  a  <-  getLine
  b  <-  getLine
  putStrLn  $  a  ++  b

main  ::  IO  ()
main  =  do

  a  <-  (++)  <$>  getLine  <*>  getLine
  putStrLn  a

$  stack  runhaskell  af2.hs
One
Two
OneTwo



Function Application ((->) a) as an Applicative Functor
pure  ::  b  ->  ((->)  a)  b

     ::  b  ->  a  ->  b
(<*>)  ::  ((->)  a)  (b  ->  c)  ->  ((->)  a)  b  ->  ((->)  a)  c

      ::  (a  ->  b  ->  c)  ->  (a  ->  b)  ->  (a  ->  c)

The “box” is “a function that takes an a and returns the type in the box”

<*> takes f :: a -> b -> c and g :: a -> b and should produce a -> c.

Applying an argument x :: a to f and g gives g x :: b and f x :: b -> c.
This means applying g x to f x gives c, i.e., f x (g x) :: c.

instance  Applicative  ((->)  a)  where
  pure  x   =  \_  ->  x          −− a.k.a., const
  f  <*>  g  =  \x  ->  f  x  (g  x)  −− Takes an a and uses f & g to produce a c

Prelude>  :t  \f  g  x  ->  f  x  (g  x)
\f  g  x  ->  f  x  (g  x)  ::  (a  ->  b  ->  c)  ->  (a  ->  b)  ->  a  ->  c



Functions as Applicative Functors
instance  Applicative  ((->)  a)  where  f  <*>  g  =  \x  ->  f  x  (g  x)
instance  Functor      ((->)  a)  where  fmap  =  (.)
f  <$>  x  =  fmap  f  x

Prelude>  :t  (+)  <$>  (+3)  <*>  (*100)
(+)  <$>  (+3)  <*>  (*100)  ::  Num  b  =>  b  ->  b  −−  A  function  on  numbers
Prelude>  (  (+)  <$>  (+3)  <*>  (*100)  )    5
508                −−  Apply  5  to  +3,  apply  5  to  *100,  and  add  the  results

Single-argument functions (+3), (*100) are the boxes (arguments are “put
inside”), which are assembled with (+) into a single-argument function.

  (       (+)  <$>  (+3)  <*>  (*100)    )  5
=  (       ((+)  .  (+3))  <*>  (*100)    )  5  −− Definition of <$>
=  (\x  ->  ((+)  .  (+3))  x   ((*100)  x))  5  −− Definition of <*>
=         ((+)  .  (+3))  5   ((*100)  5))    −− Apply 5 to lambda expr.
=         ((+)  ((+3)  5))   ((*100)  5))    −− Definition of .
=          (+)   8           500           −− Evaluate (+3) 5, (*100) 5
=          508                           −− Evaluate (+) 8 500



Functions as Applicative Functors

Another example: („) is the “build a 3-tuple operator”

Prelude>  :t  (,,)  <$>  (+3)  <*>  (*3)  <*>  (*100)
(,,)  <$>  (+3)  <*>  (*3)  <*>  (*100)  ::  Num  a  =>  a  ->  (a,  a,  a)

Prelude>  ((,,)   <$>   (+3)   <*>   (*3)   <*>   (*100))    2
(5,6,200)

The elements of the 3-tuple:

2 + 3 = 5
2 * 3 = 6
2 * 100 = 200

Each comes from applying 2 to the three functions.

“Generate a 3-tuple by applying the argument to (+3), (*3), and (*100)”



ZipList Applicative Functors
The usual implementation of Applicative Functors on lists generates all
possible combinations:

Prelude>  [(+),(*)]  <*>  [1,2]  <*>  [10,100]
[11,101,12,102,10,100,20,200]

Control.Applicative provides an alternative approach with zip-like behavior:

newtype  ZipList  a  =  ZipList  {  getZipList  ::  [a]  }
instance  Applicative  ZipList  where

  pure  x  =  ZipList  (repeat  x)    −− Infinite list of x’s
  ZipList  fs  <*>  ZipList  xs  =  ZipList  (zipWith  (\f  x  ->  f  x)  fs  xs)

>  ZipList  [(+),(*)]  <*>  ZipList  [1,2]  <*>  ZipList  [10,100]
ZipList  {getZipList  =  [11,200]}         −−  [1  +  10,  2  *  100]
>  pure  (,,)  <*>  ZipList  [1,2]  <*>  ZipList  [3,4]  <*>  ZipList  [5,6]
ZipList  {getZipList  =  [(1,3,5),(2,4,6)]}



liftA2: Lift a Two-Argument Function to an Applicative Functor
class  Functor  f  =>  Applicative  f  where

  pure    ::  a  ->  f  a
  (<*>)   ::  f  (a  ->  b)  ->  f  a  ->  f  b
  (<*>)   =  liftA2  id       −− Default: get function from 1st arg’s box

  liftA2  ::  (a  ->  b  ->  c)  ->  f  a  ->  f  b  ->  f  c
  liftA2  f  x  =  (<*>)  (fmap  f  x)     −− Default implementation

liftA2 takes a binary function and “lifts” it to work on boxed values, e.g.,
  liftA2  ::  (a  ->  b  ->  c)  ->  (f  a  ->  f  b  ->  f  c)

Prelude  Control.Applicative>  liftA2  (:)  (Just  3)  (Just  [4])
Just  [3,4]         −−  Apply  (:)  inside  the  boxes,  i.e.,  Just  ((:)  3  [4])

instance  Applicative  ZipList  where
    pure  x  =  ZipList  (repeat  x)
    liftA2  f  (ZipList  xs)  (ZipList  ys)  =  ZipList  (zipWith  f  xs  ys)



Turning a list of boxes into a box containing a list

sequenceA1  ::  Applicative  f  =>  [f  a]  ->  f  [a]  −− Prelude sequenceA
sequenceA1  []      =  pure  []
sequenceA1  (x:xs)  =  (:)  <$>  x  <*>  sequenceA1  xs

*Main>  sequenceA1  [Just  3,  Just  2,  Just  1]
Just  [3,2,1]

Recall that f <$> Just x <*> Just y = Just (f x y)

sequenceA1  [Just  3,  Just  1]
=  (:)  <$>  Just  3  <*>  sequenceA1  [Just  1]
=  (:)  <$>  Just  3  <*>  ((:)  <$>  Just  1  <*>  sequenceA1  [])
=  (:)  <$>  Just  3  <*>  ((:)  <$>  Just  1  <*>  pure  [])
=  (:)  <$>  Just  3  <*>  ((:)  <$>  Just  1  <*>  Just  [])
=  (:)  <$>  Just  3  <*>  Just  [1]
=  Just  [3,1]



SequenceA Can Also Be Implemented With a Fold
import  Control.Applicative  (liftA2)

sequenceA2  ::  Applicative  f  =>  [f  a]  ->  f  [a]  −− Prelude sequenceA
sequenceA2  =  foldr  (liftA2  (:))  (pure  [])

How do the types work out?
liftA2 :: App. f ⇒ (a → b → c ) → f a → f b → f c
(:) :: a → [a] → [a]

Passing (:) to liftA2 makes b = [a] and c = [a], so
liftA2 (:) :: App. f ⇒ f a → f [a] → f [a]

foldr :: (d → e → e) → e → [d] → e

Passing liftA2 (:) to foldr makes d = f a and e = f [a], so
foldr ( liftA2 (:)) :: App. f ⇒ f [a] → [ f a] → f [a]

pure [] :: App. f ⇒ f [a]
foldr ( liftA2 (:)) (pure []) :: App. f ⇒ [ f a] → f [a]



SequenceA in Action
sequenceA  ::  Applicative  f  =>  [f  a]  ->  f  [a]
sequenceA  =  foldr  (liftA2  (:))  (pure  [])

“Take the items from a list of boxes to make a box with a list of items”

Prelude>  sequenceA  [Just  3,  Just  2,  Just  1]
Just  [3,2,1]
Prelude>  sequenceA  [Just  3,  Nothing,  Just  1]
Nothing                      −−  ̀ `Nothing''  nullifies  the  result

Prelude>  :t  sequenceA  [(+3),  (+2),  (+1)]
sequenceA  [(+3),  (+2),  (+1)]  ::  Num  a  =>  a  ->  [a]  −−  Produces  a  list
Prelude>  sequenceA  [(+3),  (+2),  (+1)]  10
[13,12,11]                   −−  Apply  the  argument  to  each  function

Prelude>  sequenceA  [[1,2,3],[10,20]]
[[1,10],[1,20],[2,10],[2,20],[3,10],[3,20]]  −−  fmap  on  lists



Applicative Functor Laws

              pure  f  <*>  x  =  fmap  f  x   −− <*>: apply a boxed function

             pure  id  <*>  x  =  x          −− Because fmap id = id

pure  (.)  <*>  x  <*>  y  <*>  z  =  x  <*>  (y  <*>  z)   −− <*> is left-to-right

         pure  f  <*>  pure  x  =  pure  (f  x)     −− Apply a boxed function

              x  <*>  pure  y  =  pure  ($  y)  <*>  x  −− ($ y): “apply arg. y”



The newtype keyword: Build a New Type From an Existing Type
Say you want a version of an existing type only usable in certain contexts.
type makes an alias with no restrictions. newtype is a more efficient version of
data that only allows a single data constructor

newtype  DegF  =  DegF  {  getDegF  ::  Double  }
newtype  DegC  =  DegC  {  getDegC  ::  Double  }

fToC  ::  DegF  ->  DegC
fToC  (DegF  f)  =  DegC  $  (f  -  32)  *  5  /  9

cToF  ::  DegC  ->  DegF
cToF  (DegC  c)  =  DegF  $  (c  *  9  /  5)  +  32

instance  Show  DegF  where  show  (DegF  f)  =  show  f  ++  "F"

instance  Show  DegC  where  show  (DegC  c)  =  show  c  ++  "C"



DegF and DegC In Action

*Main>  fToC  (DegF  32)
0.0C

*Main>  fToC  (DegF  98.6)
37.0C

*Main>  cToF  (DegC  37)
98.6F

*Main>  cToF  33
    *  No  instance  for  (Num  DegC)  arising  from  the  literal  '33'

*Main>  DegC  33  +  DegC  32
    *  No  instance  for  (Num  DegC)  arising  from  a  use  of  '+'

*Main>  let  t1  =  DegC  33

*Main|      t2  =  DegC  10  in

*Main|  getDegC  t1  +  getDegC  t2
43.0



Newtype vs. Data: Slightly Faster and Lazier
newtype  DegF  =  DegF  {  getDegF  ::  Double  }
data     DegF  =  DegF  {  getDegF  ::  Double  }  −− Same syntax

A newtype may only have a single data constructor with a single field

Compiler treats a newtype as the encapsulated type, so it’s slightly faster

Pattern matching always succeeds for a newtype:

Prelude>  data  DT     =  DT  Bool
Prelude>  newtype  NT  =  NT  Bool

Prelude>  helloDT  (DT  _)  =  "hello"
Prelude>  helloNT  (NT  _)  =  "hello"

Prelude>  helloDT  undefined
"***  Exception:  Prelude.undefined
Prelude>  helloNT  undefined
"hello"                      −−  Just  a  Bool  in  NT's  clothing



Data vs. Type vs. NewType

Keyword When to use

data When you need a completely new algebraic type or record, e.g.,
data MyTree a = Node a (MyTree a) (MyTree a) | Leaf

type When you want a concise name for an existing type and aren’t
trying to restrict its use, e.g., type String = [Char]

newtype When you’re trying to restrict the use of an existing type and were
otherwise going to write data MyType = MyType t



Monoids
Type classes present a common interface to types that behave similarly

A Monoid is a type with an associative binary operator and an identity value

E.g., * and 1 on numbers, ++ and [] on lists:

Prelude>  4  *  1
4   −−  1  is  the  identity  on  the  right
Prelude>  1  *  4
4   −−  1  is  the  identity  on  the  left
Prelude>  2  *  (3  *  4)
24
Prelude>  (2  *  3)  *  4
24   −−  *  is  associative
Prelude>  2  *  3
6
Prelude>  3  *  2
6   −−  *  happens  to  be  commutative

Prelude>  "hello"  ++  []
"hello"   −−  []  is  the  right  identity
Prelude>  []  ++  "hello"
"hello"   −−  []  is  the  left  identity
Prelude>  "a"  ++  ("bc"  ++  "de")
"abcde"
Prelude>  ("a"  ++  "bc")  ++  "de"
"abcde"   −−  ++  is  associative
Prelude>  "a"  ++  "b"
"ab"
Prelude>  "b"  ++  "a"
"ba"      −−  ++  is  not  commutative



The Monoid Type Class
class  Monoid  m  where

  mempty   ::  a                    −− The identity value
  mappend  ::  m  ->  m  ->  m          −− The associative binary operator

  mconcat  ::  [m]  ->  m             −− Apply the binary operator to a list
  mconcat  =  foldr  mappend  mempty  −− Default implementation

Lists are Monoids:
instance  Monoid  [a]  where

  mempty   =  []
  mappend  =  (++)

Prelude>  mempty  ::  [a]
[]
Prelude>  "hello  "  ̀ mappend`  "world!"
"hello  world!"
Prelude>  mconcat  ["hello  ","pfp  ","world!"]
"hello  pfp  world!"



*, 1 and +, 0 Can Each Make a Monoid
newtype lets us build distinct Monoids for each

In Data.Monoid,

newtype  Product  a  =  Product  {  getProduct  ::  a  }
  deriving  (Eq,  Ord,  Read,  Show,  Bounded)

instance  Num  a  =>  Monoid  (Product  a)  where
  mempty  =  Product  1
  Product  x  ̀ mappend`  Product  y  =  Product  (x  *  y)

newtype  Sum  a  =  Sum  {  getSum  ::  a  }
  deriving  (Eq,  Ord,  Read,  Show,  Bounded)

instance  Num  a  =>  Monoid  (Sum  a)  where
  mempty  =  Sum  0
  Sum  x  ̀ mappend`  Sum  y  =  Sum  (x  +  y)



Product and Sum In Action

Prelude  Data.Monoid>  mempty  ::  Sum  Int
Sum  {getSum  =  0}
Prelude  Data.Monoid>  mempty  ::  Product  Int
Product  {getProduct  =  1}

Prelude  Data.Monoid>  Sum  3  ̀ mappend`  Sum  4
Sum  {getSum  =  7}
Prelude  Data.Monoid>  Product  3  ̀ mappend`  Product  4
Product  {getProduct  =  12}

Prelude  Data.Monoid>  mconcat  [Sum  1,  Sum  10,  Sum  100]
Sum  {getSum  =  111}
Prelude  Data.Monoid>  mconcat  [Product  10,  Product  3,  Product  5]
Product  {getProduct  =  150}



The Any (||, False) and All (&&, True) Monoids

In Data.Monoid,

newtype  Any  =  Any  {  getAny  ::  Bool  }
  deriving  (Eq,  Ord,  Read,  Show,  Bounded)

instance  Monoid  Any  where
  mempty  =  Any  False
  Any  x  ̀ mappend`  Any  y  =  Any  (x  ||  y)

newtype  All  =  All  {  getAll  ::  Bool  }
  deriving  (Eq,  Ord,  Read,  Show,  Bounded)

instance  Monoid  All  where
  mempty  =  All  True
  All  x  ̀ mappend`  All  y  =  All  (x  &&  y)



Any and All
Prelude  Data.Monoid>  mempty  ::  Any
Any  {getAny  =  False}
Prelude  Data.Monoid>  mempty  ::  All
All  {getAll  =  True}

Prelude  Data.Monoid>  getAny  $  Any  True  ̀ mappend`  Any  False
True
Prelude  Data.Monoid>  getAll  $  All  True  ̀ mappend`  All  False
False

Prelude  Data.Monoid>  mconcat  [Any  True,  Any  False,  Any  True]
Any  {getAny  =  True}
Prelude  Data.Monoid>  mconcat  [All  True,  All  True,  All  False]
All  {getAll  =  False}

Yes, any and all are easier to use



Ordering as a Monoid
data  Ordering  =  LT  |  EQ  |  GT

In Data.Monoid,

instance  Monoid  Ordering  where
  mempty  =  EQ
  LT  ̀ mappend`  _  =  LT
  EQ  ̀ mappend`  y  =  y
  GT  ̀ mappend`  _  =  GT

Application: an lcomp for strings ordered by length then alphabetically, e.g.,

lcomp  ::  String  ->  String  ->  Ordering

"b"        ̀ lcomp`  "aaaa"     =  LT  −− b is shorter
"bbbbb"    ̀ lcomp`  "a"        =  GT  −− bbbbb is longer
"avenger"  ̀ lcomp`  "avenged"  =  LT  −− Same length: r is after d



lcomp

lcomp  ::  String  ->  String  ->  Ordering
lcomp  x  y  =  case  length  x  ̀ compare`  length  y  of

            LT  ->  LT
            GT  ->  GT
            EQ  ->  x  ̀ compare`  y

A little too operational; mappend is exactly what we want

lcomp  ::  String  ->  String  ->  Ordering
lcomp  x  y  =  (length  x  ̀ compare`  length  y)  ̀ mappend`

            (x  ̀ compare`  y)



Maybe the Monoid

instance  Monoid  a  =>  Monoid  (Maybe  a)  where
  mempty  =  Nothing
  Nothing  ̀ mappend`  m        =  m
  m        ̀ mappend`  Nothing  =  m
  Just  m1  ̀ mappend`  Just  m2  =  Just  (m1  ̀ mappend`  m2)

Prelude>  Nothing  ̀ mappend`  Just  "pfp"
Just  "pfp"
Prelude>  Just  "fun"  ̀ mappend`  Nothing
Just  "fun"

Prelude>  :m  +Data.Monoid
Prelude  Data.Monoid>  Just  (Sum  3)  ̀ mappend`  Just  (Sum  4)
Just  (Sum  {getSum  =  7})



The Foldable Type Class

What I taught you:

foldr  ::  (a  ->  b  ->  b)  ->  b  ->  [a]  ->  b
foldr  _  a  []      =  a
foldr  f  a  (x:xs)  =  f  x  (foldr  f  a  xs)

How it’s actually defined (Data.Foldable):

foldr  ::  Foldable  t  =>  (a  ->  b  ->  b)  ->  b  ->  t  a  ->  b



class  Foldable  t  where
  {−#  MINIMAL  foldMap  |  foldr  #−}
  foldr,  foldr'  ::  (a  ->  b  ->  b)  ->  b  ->  t  a  ->  b
  foldr1         ::  (a  ->  a  ->  a)  ->  t  a  ->  a
  foldl,  foldl'  ::  (b  ->  a  ->  b)  ->  b  ->  t  a  ->  b
  foldl1         ::  (a  ->  a  ->  a)  ->  t  a  ->  a
  fold           ::  Monoid  m  =>  t  m  ->  m            −− with mappend
  foldMap        ::  Monoid  m  =>  (a  ->  m)  ->  t  a  ->  m
  toList         ::  t  a  ->  [a]
  null           ::  t  a  ->  Bool
  length         ::  t  a  ->  Int
  elem           ::  Eq  a  =>  a  ->  t  a  ->  Bool
  maximum        ::  Ord  a  =>  t  a  ->  a
  minimum        ::  Ord  a  =>  t  a  ->  a
  sum            ::  Num  a  =>  t  a  ->  a
  product        ::  Num  a  =>  t  a  ->  a

Instance of Foldable for [] is just the usual list functions



data  Tree  a  =  Node  a  (Tree  a)  (Tree  a)  |  Nil  deriving  (Eq,  Read)

instance  Foldable  Tree  where
  foldMap  _  Nil           =  mempty
  foldMap  f  (Node  x  l  r)  =  foldMap  f  l  ̀ mappend`
                           f  x          ̀ mappend`
                           foldMap  f  r

>  foldl  (+)  0  (fromList  [5,3,1,2,4,6,7]  ::  Tree  Int)
28                   −−  folding  the  tree
>  getSum  $  foldMap  Sum  $  fromList  [5,3,1,2,4,6,7]
28                   −−  The  Sum  Monoid's  mappend  is  +
>  getAny  $  foldMap  (\x  ->  Any  $  x  ==  'w')  $  fromList  "brown"
True                 −−  Any's  mappend  is  ||
>  getAny  $  foldMap  (Any  .  (=='w'))  $  fromList  "brown"
True                 −−  More  concise
>  foldMap  (\x  ->  [x])  $  fromList  [5,3,1,2,4,6,7]
[1,2,3,4,5,6,7]      −−  List's  mappend  is  ++


