
Functors and Friends

Stephen A. Edwards

Columbia University

Fall 2020

Functors: Types That Hold a Type in a Box

class Functor f where
 fmap :: (a -> b) -> f a -> f b

f is a type constructor of kind * -> *. “A box of”

fmap g x means “apply g to every a in the box x to produce a box of b’s”

data Maybe a = Just a | Nothing
instance Functor Maybe where

 fmap _ Nothing = Nothing
 fmap g (Just x) = Just (g x)

data Either a b = Left a | Right b
instance Functor (Either a) where

 fmap _ (Left x) = Left x
 fmap g (Right y) = Right (g y)

data List a = Cons a (List a) | Nil
instance Functor List where

 fmap g (Cons x xs) = Cons (g x) (fmap g xs)
 fmap _ Nil = Nil

IO as a Functor

Functor takes a type constructor of kind * -> *, which is the kind of IO

Prelude> :k IO
IO :: * -> *

IO does behave like a kind of box:

query :: IO String
query = do line <- getLine −− getLine returns a box :: IO String

 let res = line ++ "!" −− take line out of box from getLine
 return res −− put res in an IO box

The definition of Functor IO in the Prelude: (alternative syntax)

instance Functor IO where
 fmap f action = do result <- action −− take result from the box
 return (f result) −− apply f; put it a box

Using fmap with I/O Actions

main = do line <- getLine
 let revLine = reverse line −− Tedious but correct
 putStrLn revLine

main = do revLine <- fmap reverse getLine −− More direct
 putStrLn revLine

Prelude> fmap (++"!") getLine
foo
"foo!"

Functions are Functors
Prelude> :k (->)
(->) :: * -> * -> * −− Like ̀ `(+),'' (−>) is a function on types

That is, the function type constructor -> takes two concrete types and
produces a third (a function). This is the same kind as Either

Prelude> :k ((->) Int)
((->) Int) :: * -> *

The ((->) Int) type constructor takes type a and produces functions that
tranform Ints to a’s. fmap will apply a function that transforms the a’s to b’s.

instance Functor ((->) a) where
 fmap f g = \x -> f (g x) −− Wait, this is just function composition!

instance Functor ((->) a) where
 fmap = (.) −− Much more succinct (Prelude definition)

Fmapping Functions: fmap f g = f . g

Prelude> :t fmap (*3) (+100)
fmap (*3) (+100) :: Num b => b -> b

Prelude> fmap (*3) (+100) 1
303

Prelude> (*3) ̀ fmap` (+100) $ 1
303

Prelude> (*3) . (+100) $ 1
303

Prelude> fmap (show . (*3)) (+100) 1
"303"

Partially Applying fmap

Prelude> :t fmap
fmap :: Functor f => (a -> b) -> f a -> f b

Prelude> :t fmap (*3)
fmap (*3) :: (Functor f, Num b) => f b -> f b

“fmap (*3)” is a function that operates on functors of the Num type class
(“functors over numbers”). The function (*3) has been lifted to functors

Prelude> :t fmap (replicate 3)
fmap (replicate 3) :: Functor f => f a -> f [a]

“fmap (replicate 3)” is a function over functors that generates “boxed lists”

Functor Laws

Applying the identity function does not change the functor
(“fmap does not change the box”):

 fmap id = id

Applying fmap with two functions is like applying their composition
(“applying functions to the box is like applying them in the box”):

 fmap (f . g) = fmap f . fmap g

 fmap (\y -> f (g y)) x = fmap f (fmap g x) −− Equivalent

data Maybe a = Just a | Nothing instance Functor Maybe where
 fmap _ Nothing = Nothing

{− Does Maybe follow the laws? −} fmap f (Just x) = Just (f x)

fmap id Nothing = Nothing −− from the definition of fmap
fmap id (Just x) = Just (id x) −− from the definition of fmap

 = Just x −− from the definition of id

(fmap f . fmap g) Nothing = fmap f (fmap g Nothing) −− def of .
 = fmap f Nothing −− def of fmap
 = Nothing −− def of fmap
 = fmap (f . g) Nothing −− def of fmap

(fmap f . fmap g) (Just x) = fmap f (fmap g (Just x))−− def of .
 = fmap f (Just (g x)) −− def of fmap
 = Just (f (g x)) −− def of fmap
 = Just ((f . g) x) −− def of .
 = fmap (f . g) (Just x) −− def of fmap

My So-Called Functor

data CMaybe a = CNothing | CJust Int a
 deriving Show

instance Functor CMaybe where −− Purported
 fmap _ CNothing = CNothing
 fmap f (CJust c x) = CJust (c+1) (f x)

*Main> fmap id CNothing
CNothing −− OK: fmap id Nothing = id Nothing
*Main> fmap id (CJust 42 "Hello")
CJust 43 "Hello" −− FAIL: fmap id /= id because 43 /= 42

*Main> fmap ((+1) . (+1)) (CJust 42 100)
CJust 43 102

*Main> (fmap (+1) . fmap (+1)) (CJust 42 100)
CJust 44 102 −− FAIL: fmap (f . g) /= fmap f . fmap g because 43 /= 44

Multi-Argument Functions on Functors: Applicative Functors

Functions in Hakell are Curried:
1 + 2 = (+) 1 2 = ((+) 1) 2 = (1+) 2 = 3

What if we wanted to perform 1+2 in a Functor?

class Functor f where
 fmap :: (a -> b) -> f a -> f b

fmap is “apply a normal function to a functor, producing a functor”

Say we want to add 1 to 2 in the [] Functor (lists):

[1] + [2] = (+) [1] [2] −− Infix to prefix
 = (fmap (+) [1]) [2] −− fmap: apply function to functor
 = [(1+)] [2] −− Now what?

We want to apply a Functor containing functions to another functor, e.g.,
something with the signature [a -> b] -> [a] -> [b]

Applicative Functors: Applying Functions in a Functor
infixl 4 <*>
class Functor f => Applicative f where

 pure :: a -> f a −− Box something, e.g., a function
 (<*>) :: f (a -> b) -> f a -> f b −− Apply boxed function to a box

instance Applicative Maybe where
 pure = Just −− Put it in a “Just” box
 Nothing <*> _ = Nothing −− No function to apply
 Just f <*> m = fmap f m −− Apply function-in-a-box f

Prelude> :t fmap (+) (Just 1)
fmap (+) (Just 1) :: Num a => Maybe (a -> a) −− Function−in−a−box

Prelude> fmap (+) (Just 1) <*> (Just 2)
Just 3
Prelude> fmap (+) Nothing <*> (Just 2)
Nothing −− Nothing is a buzzkiller

Pure and the <$> Operator
Prelude> pure (-) <*> Just 10 <*> Just 4
Just 6
Prelude> pure (10-) <*> Just 4
Just 6
Prelude> (-) ̀ fmap` (Just 10) <*> Just 4
Just 6

<$> is simply an infix fmap meant to remind you of the $ operator

infixl 4 <$>
(<$>) :: Functor f => (a -> b) -> f a -> f b
f <$> x = fmap f x −− Or equivalently, f `fmap` x

So f <$> x <*> y <*> z is like f x y z but on applicative functors x, y, z

Prelude> (+) <$> [1] <*> [2]
[3]
Prelude> (,,) <$> Just "PFP" <*> Just "Rocks" <*> Just "Out"
Just ("PFP","Rocks","Out")

Maybe as an Applicative Functor

instance Functor Maybe where
 fmap _ Nothing = Nothing
 fmap g (Just x) = Just (g x)

infixl 4 <$>
f <$> x = fmap f x

infixl 4 <*>
instance Applicative Maybe where

 pure = Just
 Nothing <*> _ = Nothing
 Just f <*> m = fmap f m

 f <$> Just x <*> Just y
= (f <$> Just x) <*> Just y −− a <$> b <*> c = (a <$> b) <*> c
= (fmap f (Just x)) <*> Just y −− Definition of <$>
= (Just (f x)) <*> Just y −− Definition of fmap Maybe
= fmap (f x) (Just y) −− Definition of <*>
= Just (f x y) −− Definition of fmap Maybe

Lists are Applicative Functors

instance Applicative [] where
 pure x = [x] −− Pure makes singleton list
 fs <*> xs = [f x | f <- fs, x <- xs] −− All combinations

<*> associates (evaluates) left-to-right, so the last list is iterated over first:

Prelude> [(++"!"), (++"?"), (++".")] <*> ["Run", "GHC"]
["Run!","GHC!","Run?","GHC?","Run.","GHC."]

Prelude> [x+y | x <- [100,200,300], y <- [1..3]]
[101,102,103,201,202,203,301,302,303]

Prelude> (+) <$> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]

Prelude> pure (+) <*> [100,200,300] <*> [1..3]
[101,102,103,201,202,203,301,302,303]

IO is an Applicative Functor

<*> enables I/O actions to be used more like functions

instance Applicative IO where
 pure = return
 a <*> b = do f <- a
 x <- b
 return (f x)

Specialized to IO actions,
(<*>) :: IO (a -> b)

 -> IO a
 -> IO b

main = do
 a <- getLine
 b <- getLine
 putStrLn $ a ++ b

main :: IO ()
main = do

 a <- (++) <$> getLine <*> getLine
 putStrLn a

$ stack runhaskell af2.hs
One
Two
OneTwo

Function Application ((->) a) as an Applicative Functor
pure :: b -> ((->) a) b

 :: b -> a -> b
(<*>) :: ((->) a) (b -> c) -> ((->) a) b -> ((->) a) c

 :: (a -> b -> c) -> (a -> b) -> (a -> c)

The “box” is “a function that takes an a and returns the type in the box”

<*> takes f :: a -> b -> c and g :: a -> b and should produce a -> c.

Applying an argument x :: a to f and g gives g x :: b and f x :: b -> c.
This means applying g x to f x gives c, i.e., f x (g x) :: c.

instance Applicative ((->) a) where
 pure x = _ -> x −− a.k.a., const
 f <*> g = \x -> f x (g x) −− Takes an a and uses f & g to produce a c

Prelude> :t \f g x -> f x (g x)
\f g x -> f x (g x) :: (a -> b -> c) -> (a -> b) -> a -> c

Functions as Applicative Functors
instance Applicative ((->) a) where f <*> g = \x -> f x (g x)
instance Functor ((->) a) where fmap = (.)
f <$> x = fmap f x

Prelude> :t (+) <$> (+3) <*> (*100)
(+) <$> (+3) <*> (*100) :: Num b => b -> b −− A function on numbers
Prelude> ((+) <$> (+3) <*> (*100)) 5
508 −− Apply 5 to +3, apply 5 to *100, and add the results

Single-argument functions (+3), (*100) are the boxes (arguments are “put
inside”), which are assembled with (+) into a single-argument function.

 ((+) <$> (+3) <*> (*100)) 5
= (((+) . (+3)) <*> (*100)) 5 −− Definition of <$>
= (\x -> ((+) . (+3)) x ((*100) x)) 5 −− Definition of <*>
= ((+) . (+3)) 5 ((*100) 5)) −− Apply 5 to lambda expr.
= ((+) ((+3) 5)) ((*100) 5)) −− Definition of .
= (+) 8 500 −− Evaluate (+3) 5, (*100) 5
= 508 −− Evaluate (+) 8 500

Functions as Applicative Functors

Another example: („) is the “build a 3-tuple operator”

Prelude> :t (,,) <$> (+3) <*> (*3) <*> (*100)
(,,) <$> (+3) <*> (*3) <*> (*100) :: Num a => a -> (a, a, a)

Prelude> ((,,) <$> (+3) <*> (*3) <*> (*100)) 2
(5,6,200)

The elements of the 3-tuple:

2 + 3 = 5
2 * 3 = 6
2 * 100 = 200

Each comes from applying 2 to the three functions.

“Generate a 3-tuple by applying the argument to (+3), (*3), and (*100)”

ZipList Applicative Functors
The usual implementation of Applicative Functors on lists generates all
possible combinations:

Prelude> [(+),(*)] <*> [1,2] <*> [10,100]
[11,101,12,102,10,100,20,200]

Control.Applicative provides an alternative approach with zip-like behavior:

newtype ZipList a = ZipList { getZipList :: [a] }
instance Applicative ZipList where

 pure x = ZipList (repeat x) −− Infinite list of x’s
 ZipList fs <*> ZipList xs = ZipList (zipWith (\f x -> f x) fs xs)

> ZipList [(+),(*)] <*> ZipList [1,2] <*> ZipList [10,100]
ZipList {getZipList = [11,200]} −− [1 + 10, 2 * 100]
> pure (,,) <*> ZipList [1,2] <*> ZipList [3,4] <*> ZipList [5,6]
ZipList {getZipList = [(1,3,5),(2,4,6)]}

liftA2: Lift a Two-Argument Function to an Applicative Functor
class Functor f => Applicative f where

 pure :: a -> f a
 (<*>) :: f (a -> b) -> f a -> f b
 (<*>) = liftA2 id −− Default: get function from 1st arg’s box

 liftA2 :: (a -> b -> c) -> f a -> f b -> f c
 liftA2 f x = (<*>) (fmap f x) −− Default implementation

liftA2 takes a binary function and “lifts” it to work on boxed values, e.g.,
 liftA2 :: (a -> b -> c) -> (f a -> f b -> f c)

Prelude Control.Applicative> liftA2 (:) (Just 3) (Just [4])
Just [3,4] −− Apply (:) inside the boxes, i.e., Just ((:) 3 [4])

instance Applicative ZipList where
 pure x = ZipList (repeat x)
 liftA2 f (ZipList xs) (ZipList ys) = ZipList (zipWith f xs ys)

Turning a list of boxes into a box containing a list

sequenceA1 :: Applicative f => [f a] -> f [a] −− Prelude sequenceA
sequenceA1 [] = pure []
sequenceA1 (x:xs) = (:) <$> x <*> sequenceA1 xs

*Main> sequenceA1 [Just 3, Just 2, Just 1]
Just [3,2,1]

Recall that f <$> Just x <*> Just y = Just (f x y)

sequenceA1 [Just 3, Just 1]
= (:) <$> Just 3 <*> sequenceA1 [Just 1]
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> sequenceA1 [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> pure [])
= (:) <$> Just 3 <*> ((:) <$> Just 1 <*> Just [])
= (:) <$> Just 3 <*> Just [1]
= Just [3,1]

SequenceA Can Also Be Implemented With a Fold
import Control.Applicative (liftA2)

sequenceA2 :: Applicative f => [f a] -> f [a] −− Prelude sequenceA
sequenceA2 = foldr (liftA2 (:)) (pure [])

How do the types work out?
liftA2 :: App. f ⇒ (a → b → c) → f a → f b → f c
(:) :: a → [a] → [a]

Passing (:) to liftA2 makes b = [a] and c = [a], so
liftA2 (:) :: App. f ⇒ f a → f [a] → f [a]

foldr :: (d → e → e) → e → [d] → e

Passing liftA2 (:) to foldr makes d = f a and e = f [a], so
foldr (liftA2 (:)) :: App. f ⇒ f [a] → [f a] → f [a]

pure [] :: App. f ⇒ f [a]
foldr (liftA2 (:)) (pure []) :: App. f ⇒ [f a] → f [a]

SequenceA in Action
sequenceA :: Applicative f => [f a] -> f [a]
sequenceA = foldr (liftA2 (:)) (pure [])

“Take the items from a list of boxes to make a box with a list of items”

Prelude> sequenceA [Just 3, Just 2, Just 1]
Just [3,2,1]
Prelude> sequenceA [Just 3, Nothing, Just 1]
Nothing −− ̀ `Nothing'' nullifies the result

Prelude> :t sequenceA [(+3), (+2), (+1)]
sequenceA [(+3), (+2), (+1)] :: Num a => a -> [a] −− Produces a list
Prelude> sequenceA [(+3), (+2), (+1)] 10
[13,12,11] −− Apply the argument to each function

Prelude> sequenceA [[1,2,3],[10,20]]
[[1,10],[1,20],[2,10],[2,20],[3,10],[3,20]] −− fmap on lists

Applicative Functor Laws

 pure f <*> x = fmap f x −− <*>: apply a boxed function

 pure id <*> x = x −− Because fmap id = id

pure (.) <*> x <*> y <*> z = x <*> (y <*> z) −− <*> is left-to-right

 pure f <*> pure x = pure (f x) −− Apply a boxed function

 x <*> pure y = pure ($ y) <*> x −− ($ y): “apply arg. y”

The newtype keyword: Build a New Type From an Existing Type
Say you want a version of an existing type only usable in certain contexts.
type makes an alias with no restrictions. newtype is a more efficient version of
data that only allows a single data constructor

newtype DegF = DegF { getDegF :: Double }
newtype DegC = DegC { getDegC :: Double }

fToC :: DegF -> DegC
fToC (DegF f) = DegC $ (f - 32) * 5 / 9

cToF :: DegC -> DegF
cToF (DegC c) = DegF $ (c * 9 / 5) + 32

instance Show DegF where show (DegF f) = show f ++ "F"

instance Show DegC where show (DegC c) = show c ++ "C"

DegF and DegC In Action

*Main> fToC (DegF 32)
0.0C

*Main> fToC (DegF 98.6)
37.0C

*Main> cToF (DegC 37)
98.6F

*Main> cToF 33
 * No instance for (Num DegC) arising from the literal '33'

*Main> DegC 33 + DegC 32
 * No instance for (Num DegC) arising from a use of '+'

*Main> let t1 = DegC 33

*Main| t2 = DegC 10 in

*Main| getDegC t1 + getDegC t2
43.0

Newtype vs. Data: Slightly Faster and Lazier
newtype DegF = DegF { getDegF :: Double }
data DegF = DegF { getDegF :: Double } −− Same syntax

A newtype may only have a single data constructor with a single field

Compiler treats a newtype as the encapsulated type, so it’s slightly faster

Pattern matching always succeeds for a newtype:

Prelude> data DT = DT Bool
Prelude> newtype NT = NT Bool

Prelude> helloDT (DT _) = "hello"
Prelude> helloNT (NT _) = "hello"

Prelude> helloDT undefined
"*** Exception: Prelude.undefined
Prelude> helloNT undefined
"hello" −− Just a Bool in NT's clothing

Data vs. Type vs. NewType

Keyword When to use

data When you need a completely new algebraic type or record, e.g.,
data MyTree a = Node a (MyTree a) (MyTree a) | Leaf

type When you want a concise name for an existing type and aren’t
trying to restrict its use, e.g., type String = [Char]

newtype When you’re trying to restrict the use of an existing type and were
otherwise going to write data MyType = MyType t

Monoids
Type classes present a common interface to types that behave similarly

A Monoid is a type with an associative binary operator and an identity value

E.g., * and 1 on numbers, ++ and [] on lists:

Prelude> 4 * 1
4 −− 1 is the identity on the right
Prelude> 1 * 4
4 −− 1 is the identity on the left
Prelude> 2 * (3 * 4)
24
Prelude> (2 * 3) * 4
24 −− * is associative
Prelude> 2 * 3
6
Prelude> 3 * 2
6 −− * happens to be commutative

Prelude> "hello" ++ []
"hello" −− [] is the right identity
Prelude> [] ++ "hello"
"hello" −− [] is the left identity
Prelude> "a" ++ ("bc" ++ "de")
"abcde"
Prelude> ("a" ++ "bc") ++ "de"
"abcde" −− ++ is associative
Prelude> "a" ++ "b"
"ab"
Prelude> "b" ++ "a"
"ba" −− ++ is not commutative

The Monoid Type Class
class Monoid m where

 mempty :: a −− The identity value
 mappend :: m -> m -> m −− The associative binary operator

 mconcat :: [m] -> m −− Apply the binary operator to a list
 mconcat = foldr mappend mempty −− Default implementation

Lists are Monoids:
instance Monoid [a] where

 mempty = []
 mappend = (++)

Prelude> mempty :: [a]
[]
Prelude> "hello " ̀ mappend` "world!"
"hello world!"
Prelude> mconcat ["hello ","pfp ","world!"]
"hello pfp world!"

*, 1 and +, 0 Can Each Make a Monoid
newtype lets us build distinct Monoids for each

In Data.Monoid,

newtype Product a = Product { getProduct :: a }
 deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Product a) where
 mempty = Product 1
 Product x ̀ mappend` Product y = Product (x * y)

newtype Sum a = Sum { getSum :: a }
 deriving (Eq, Ord, Read, Show, Bounded)

instance Num a => Monoid (Sum a) where
 mempty = Sum 0
 Sum x ̀ mappend` Sum y = Sum (x + y)

Product and Sum In Action

Prelude Data.Monoid> mempty :: Sum Int
Sum {getSum = 0}
Prelude Data.Monoid> mempty :: Product Int
Product {getProduct = 1}

Prelude Data.Monoid> Sum 3 ̀ mappend` Sum 4
Sum {getSum = 7}
Prelude Data.Monoid> Product 3 ̀ mappend` Product 4
Product {getProduct = 12}

Prelude Data.Monoid> mconcat [Sum 1, Sum 10, Sum 100]
Sum {getSum = 111}
Prelude Data.Monoid> mconcat [Product 10, Product 3, Product 5]
Product {getProduct = 150}

The Any (||, False) and All (&&, True) Monoids

In Data.Monoid,

newtype Any = Any { getAny :: Bool }
 deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid Any where
 mempty = Any False
 Any x ̀ mappend` Any y = Any (x || y)

newtype All = All { getAll :: Bool }
 deriving (Eq, Ord, Read, Show, Bounded)

instance Monoid All where
 mempty = All True
 All x ̀ mappend` All y = All (x && y)

Any and All
Prelude Data.Monoid> mempty :: Any
Any {getAny = False}
Prelude Data.Monoid> mempty :: All
All {getAll = True}

Prelude Data.Monoid> getAny $ Any True ̀ mappend` Any False
True
Prelude Data.Monoid> getAll $ All True ̀ mappend` All False
False

Prelude Data.Monoid> mconcat [Any True, Any False, Any True]
Any {getAny = True}
Prelude Data.Monoid> mconcat [All True, All True, All False]
All {getAll = False}

Yes, any and all are easier to use

Ordering as a Monoid
data Ordering = LT | EQ | GT

In Data.Monoid,

instance Monoid Ordering where
 mempty = EQ
 LT ̀ mappend` _ = LT
 EQ ̀ mappend` y = y
 GT ̀ mappend` _ = GT

Application: an lcomp for strings ordered by length then alphabetically, e.g.,

lcomp :: String -> String -> Ordering

"b" ̀ lcomp` "aaaa" = LT −− b is shorter
"bbbbb" ̀ lcomp` "a" = GT −− bbbbb is longer
"avenger" ̀ lcomp` "avenged" = LT −− Same length: r is after d

lcomp

lcomp :: String -> String -> Ordering
lcomp x y = case length x ̀ compare` length y of

 LT -> LT
 GT -> GT
 EQ -> x ̀ compare` y

A little too operational; mappend is exactly what we want

lcomp :: String -> String -> Ordering
lcomp x y = (length x ̀ compare` length y) ̀ mappend`

 (x ̀ compare` y)

Maybe the Monoid

instance Monoid a => Monoid (Maybe a) where
 mempty = Nothing
 Nothing ̀ mappend` m = m
 m ̀ mappend` Nothing = m
 Just m1 ̀ mappend` Just m2 = Just (m1 ̀ mappend` m2)

Prelude> Nothing ̀ mappend` Just "pfp"
Just "pfp"
Prelude> Just "fun" ̀ mappend` Nothing
Just "fun"

Prelude> :m +Data.Monoid
Prelude Data.Monoid> Just (Sum 3) ̀ mappend` Just (Sum 4)
Just (Sum {getSum = 7})

The Foldable Type Class

What I taught you:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ a [] = a
foldr f a (x:xs) = f x (foldr f a xs)

How it’s actually defined (Data.Foldable):

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

class Foldable t where
 {−# MINIMAL foldMap | foldr #−}
 foldr, foldr' :: (a -> b -> b) -> b -> t a -> b
 foldr1 :: (a -> a -> a) -> t a -> a
 foldl, foldl' :: (b -> a -> b) -> b -> t a -> b
 foldl1 :: (a -> a -> a) -> t a -> a
 fold :: Monoid m => t m -> m −− with mappend
 foldMap :: Monoid m => (a -> m) -> t a -> m
 toList :: t a -> [a]
 null :: t a -> Bool
 length :: t a -> Int
 elem :: Eq a => a -> t a -> Bool
 maximum :: Ord a => t a -> a
 minimum :: Ord a => t a -> a
 sum :: Num a => t a -> a
 product :: Num a => t a -> a

Instance of Foldable for [] is just the usual list functions

data Tree a = Node a (Tree a) (Tree a) | Nil deriving (Eq, Read)

instance Foldable Tree where
 foldMap _ Nil = mempty
 foldMap f (Node x l r) = foldMap f l ̀ mappend`
 f x ̀ mappend`
 foldMap f r

> foldl (+) 0 (fromList [5,3,1,2,4,6,7] :: Tree Int)
28 −− folding the tree
> getSum $ foldMap Sum $ fromList [5,3,1,2,4,6,7]
28 −− The Sum Monoid's mappend is +
> getAny $ foldMap (\x -> Any $ x == 'w') $ fromList "brown"
True −− Any's mappend is ||
> getAny $ foldMap (Any . (=='w')) $ fromList "brown"
True −− More concise
> foldMap (\x -> [x]) $ fromList [5,3,1,2,4,6,7]
[1,2,3,4,5,6,7] −− List's mappend is ++

